Historic Bridge Alternatives Analysis

BRIDGE NUMBER: (933)31-71-03690 E

DESIGNATION NUMBER: 1900011

ROUTE IDENTIFICATION AND FEATURE CROSSED: SR 933 over St. Joseph River

COUNTY: St. Joseph

NBI NUMBER: 011046

PROJECT LOCATION: 1.59 miles north of SR 23, in Section 1, T-37-N, R-2-E, Portage Township, St. Joseph County, Indiana

REFERENCE POINT: 113+51

LATITUDE: 41° 41' 17" LONGITUDE: 86° 15' 02"

PREPARED BY: Adam Steury, PE, SE Lochmueller Group, Inc.

DATE: February 17, 2022

This bridge was evaluated by personnel from the Indiana Department of Transportation (INDOT) Bridge Design Unit, the District Office and the designer. The attached Draft Historic Bridge Alternatives Analysis has been reviewed by the INDOT Bridge Design Unit and Cultural Resources Office for thoroughness of the rehabilitation option and compliance with INDOT design policies. Concurrence by INDOT with the proposed Scope of Work does not constitute Final Approval of the Historic Bridge Alternatives Analysis. This draft HBAA may now be distributed to the historic consulting parties for review.

TABLE OF CONTENTS

I.	Existing Structure Data	
II.	Existing Conditions	7 – 9
III.	Purpose and Need	
IV.	Alternatives	
٧.	Minimization and Mitigation	
VI.	Preliminary Preferred Alternative	
VII.	Appendices	
	Appendix A: Maps	

Appendix B: Photographs Appendix C: Graphics/Drawings Appendix D: Cost Estimate and Quantity Calculations Appendix E: Bridge Existing Condition and Applicable Design Criteria Table Appendix F: Alternatives Analysis Table Appendix G: Historic Bridge Field Check Meeting Minutes Appendix H: HDOT 34" Tall Aesthetic Concrete Bridge Rail Appendix I: Non-destructive Testing & Geotechnical Investigation Report Appendix J: Maintenance of Traffic Conceptual Plan Appendix K: Consulting Parties Meeting Summary & Response Comments

Bridge File No. (933)31-71-03690 E

I. EXISTING STRUCTURE DATA

A. <u>Identification/History</u>

Bridge No.: (933)31-71-3690 E Project Location: SR 933 over St. Joseph River South Bend, Indiana, St. Joseph County Indiana Department of Transportation (INDOT) LaPorte District See Appendix A for project location maps.

Designation No.: 1900011

Year Built: 1914

Years Repaired:

- 1945 Rehabilitation, Des. No. Unknown, Contract Unknown
 - Select limestone railing panels replaced in-kind with limestone panels, maintaining the same architectural railing details from the original construction
- 1977 Rehabilitation (Locally Funded)
 - Bituminous surface added to travelway.
 - Concrete barrier curb replaced between sidewalk and travelway.
 - Replaced select limestone railing panels with concrete panels. Architectural details did not match original construction.
- 1997 Rehabilitation, Des. No. 0067416, Contract M-25197
 - Revetment riprap placed at upstream face of both piers.
- 2001 Rehabilitation "A", Des. No. 0017430, Contract RS-25199
 - Bituminous wearing surface milled and resurfaced.
- 2006 Rehabilitation "B", Des. No. 9610500, Contract B-27194
 - Concrete filled cofferdams constructed around both piers.
 - Riprap placed around perimeter of cofferdams.
 - Select spandrel wall limestone blocks repaired or replaced.
 - New aluminum cast ornamental light standards installed on the pier and abutment pilasters.
 - All spandrel wall limestone joints repointed.
 - Arch ring repaired with pneumatically placed mortar patching, epoxy injection of cracks and installation of weep holes at the arch spring lines.

- Existing concrete barrier curbs, sidewalks, and 6" of asphalt/concrete wearing surface removed and replaced with new concrete barrier curbs, a 6" thick concrete roadway pavement, and 6" thick concrete sidewalks.
- 2012 Rehabilitation "C", Des. No. 1173149, Contract B-34153
 - Select railing panels replaced with concrete panels. Architectural details did not match original construction.
 - Select spandrel wall limestone blocks repaired.
 - Transverse cracking in arches repaired with epoxy injection.
 - Arches strengthened with fiber reinforced polymer (FRP) strips.
 - Construction joints between arch segments patched.
- 2018 Rehabilitation "D", Des. No. 1500673, Contract B-36679
 - Polymeric concrete bridge deck overlay placed.

Most Recent Field Inspection Dates per Type of Inspection:

- 03/19/2021 Routine Inspection
- 09/05/2019 Special Inspection for Arch Settlement Monitoring
- 03/20/2018 Critical Finding Inspection Due to Failing FRP
- 05/18/2016 Underwater Inspection

Average Daily Traffic (Year of ADT):

- Construction: 16,110 vpd (2023)
- Design: 16,110 vpd (2043)

Percentage of Commercial Vehicles: 7%

Low volume road: No

Functional Classification: Other Principal Arterial

Detour Length: 3.7 miles

Load Rating:

 Load rating information provided from the Bridge Rating Application Database of Indiana (BRADIN), which is the governing system for all bridge load ratings in Indiana. Note that no legal or routine permit loads (Operating Loads) produce a rating factor (RF) less than 1.0, so load posting of the bridge is not required in accordance with INDOT Bridge Inspection Manual 3-6.0. However, there is a permanent restriction entered for this structure in the INDOT CARS Program, which prohibits issuance of any overweight vehicle permits to cross the bridge. Additionally, all design loads (Inventory Loads) produce a RF less than 1.0. A load rating factor less than 1.0 indicates that the design vehicle cannot safely utilize the bridge for an indefinite period of time.

- HS20-44
 - Operating: RF = 1.35; Load Capacity = 48 Tons
 - Inventory: RF = 0.81; Load Capacity = 29 Tons
- H20-44
 - \circ Inventory: RF = 0.90; Load Capacity = 18 Tons

Sufficiency Rating: 49.1 (out of 100)

National Register of Historic Places Status:

- Listed as Contributing Resource within the Leeper Park Historic District
- National Register File Number & Date: NR-1393; 02/18/1999

Historic Bridge Prioritization Status: Select

Historic Character-Defining Features: Reinforced Concrete Arch Bridge with Limestone Facade

- This bridge represents a variation, evolution, or transition that is conveyed through important features or innovations related to bridge construction, design, or engineering, and it retains historic integrity necessary to convey its engineering significance.
- This bridge has a decorative limestone facade on both spandrel walls, ornate concrete and limestone railing, and limestone railing pilasters with ornamental lighting.

B. <u>Structure/Dimensions</u>

Surface Type: Polymeric Concrete Overlay Out to Out of Copings: 72'-1" Out to Out of Bridge Floor: 323'-3" Clear Roadway Width: 55'-0" Number of Lanes on Structure: 5: 2 - 11'-0" Lanes, 2 - 10'-0" Lanes, 1 - 11'-0" Turn Lane, 1'-0" Curb Offsets Skew: 0° Type of Superstructure: Filled Reinforced Concrete Arch Spans: 3 Spans; Clear Span Lengths = 84'-0", 120'-0", 84'-0" Type of Substructure/Foundation: Concrete Pedestals Supported by Timber Piles Seismic Zone: 1

C. <u>Appurtenances</u>

Bridge Railing:

- Open concrete railing on both sides of bridge with ornamental limestoneclad pier and abutment pilasters and intermediate railing span pilasters.
 - Approximately 3'-6 7/8" height above sidewalk surface.
 - Approximately 4'-4 1/2" & 4'-4 1/4" height above road surface on the west and east sides of the bridge, respectively.

Bridge Lighting:

• Ornamental aluminum cast light fixtures on top of pier and abutment pilasters.

Curbs:

- Barrier curb on both sides of roadway.
 - $\circ~$ It is cast integrally with roadway pavement and sidewalk.
 - The barrier curb is 2'-6" and 2'-0" tall above roadway surface, on the west and east sides of the bridge respectively, based on current survey information. It is 1'-9" tall above sidewalk surface on both sides of the bridge.
 - \circ The barrier curb is 1'-2" wide.

Sidewalks:

- West side of bridge: 5'-3/4" minimum width, based on field measurements; 9" above roadway surface
- East side of bridge: 3'-11 1/16" minimum width, based on field measurements; 9" above roadway surface

Utilities: There are no utilities attached to the outer surfaces of the bridge;

- however there are electric, communication, gas, and water lines beneath the sidewalk and pavement on the bridge. There are additional electric, communication, gas, water, and sanitary sewer lines near the end of the bridge at the intersection with North Shore Drive.
- Railroad: None within project limits or anticipated to be affected by proposed maintenance of traffic.

D. Approaches

Roadway Width: 55'-0" Surface Type: Asphalt Guardrail: None Guardrail End Treatment: None

II. EXISTING CONDITIONS

For the purposes of this report the bridge deck refers to the roadway pavement, barrier curbs, sidewalks, and railings; the superstructure refers to the reinforced concrete arches and spandrel walls. Condition ratings range from 0 to 9, with 0 indicating a failed structure and 9 indicating a new structure with no deficiencies. Photos of the existing conditions can be found in Appendix B.

A. Bridge Deck

- General: The overall condition of the bridge deck is "fair" (Condition Rating 5 out of 9). The bridge deck on this structure consists of a Polymeric Concrete Overlay on 6" of reinforced concrete pavement on approximately 8 ¼" to 12" of unreinforced concrete pavement on fill that consists of sand, gravel, and some sandy loam. The concrete pavement thickness and fill is based on cores taken through the existing bridge (See Appendix I).
- Overlay: There is a Polymeric Concrete Overlay on the bridge.
- Surface Condition: The condition of Polymeric Concrete Overlay wearing surface is "fair" (Condition Rating 5 out of 9). Widely spaced transverse cracks intersecting with a single longitudinal crack are present in the northbound lane of the south and main spans.
- Underside Condition: The underside of the concrete pavement is not visible due to the arch superstructure. Water is leaking through the deck based on the presence of minor leakage between select arch segments and out of drain outlets at the base of arches beneath the bridge. See below under "Superstructure" for additional arch conditions and explanation of arch segments.
- Joints: There are no expansion joints on the bridge. The type I-A joints at the ends of the bridge are in good condition with minor asphalt spalling along them.
- Drainage: Drainage on the bridge is conveyed along the barrier curb lines to both ends of the bridge where it is directed along curbed roadway gutters to storm sewer inlets.
- Bridge Railing: The concrete railing is in good condition with minor cracking and weathering. Two panels of original limestone railing are present at the southeast corner of the bridge; the northernmost panel has

moderate weathering while the southernmost panel has negligible deficiencies. Limestone pilasters are present between railing panels at approximately 15'-0" spacing and are in fair condition with minor cracking, spalling, and weathering.

- Curbs: The barrier curb between the roadway and sidewalk is in good condition with vertical cracking at approximately 2'-0" spacing. There is no visual indication of collision damage on the barrier curb.
- Sidewalks: The sidewalks are both in good condition with minor transverse cracking present.
- B. <u>Superstructure</u>

LOCHMUELLER

GROUP

- General: The overall condition of the superstructure is "fair" (Condition Rating 5 out of 9).
- Spandrel Walls: The reinforced concrete spandrel walls, covered by a limestone facade, are in poor condition. Cores were previously taken through the spandrel walls and found the reinforced concrete to be crumbling on both the inside and outside faces. The limestone facade on the east side of Span B has a noticeable sag. Select limestone blocks are cracked, spalled, or exhibit significant weathering. Numerous mortar joints between stone blocks are partially or completely missing mortar.
- Arches: The arches (underside of the bridge) are in fair condition. Each span consists of four (Spans A & C) or six (Span B) separate conventionally reinforced concrete, directly adjacent, arch ring segments which are tied together with minimal reinforcement. Fiber reinforced polymer strips on the underside of the arches in all spans exhibit air pockets and debonding between the strip and the concrete surface in many locations with some locations peeling off. Differential settlement between the exterior and first interior arch ring segments of Spans B and C is present on the east (upstream) side of the bridge. This differential settlement between arches is a maximum of approximately 3" in the main span and 2" in the north span. Settlement of the east end of Pier 3 (north pier) is believed to have caused this differential arch settlement; please see substructure conditions below for further explanation.

C. <u>Substructures and Foundations</u>

- General: The overall condition of the substructure is "fair" (Condition Rating 5 out of 9). Limestone weathering and concrete deterioration is present at all substructure units.
- Scour & Settlement: Settlement is present at the east end of Pier 3. This settlement is believed to have been due to previous scour and footing undermining that was initially stabilized with riprap and later with a concrete filled cofferdam around the piers.

D. <u>Approaches</u>

• General: The asphalt approach pavement overall is in good condition. Minor cracking and rutting is present in the approach pavement. Curb ramps meeting current standards are present near the north end of the bridge at the intersection of SR 933 and North Shore Drive.

E. <u>Slopewalls</u>


• General: There are no slopewalls present at this bridge.

III. PURPOSE AND NEED

The primary need for the Leeper Park Michigan Street Bridge project, named after the adjacent historic park and street carried by the bridge, is evidenced by the deteriorated condition and insufficient load carrying capacity of the bridge.

The condition of the existing bridge is reflected by the current condition rating of 5 out of 9 for the deck, superstructure, and substructure. Condition ratings range from 0 to 9, with 0 indicating a failed structure and 9 indicating a new structure with no deficiencies; a condition rating of 5 indicates "fair" condition. The "fair" condition rating is primarily due to the differential settlement of the arches on the east side of the bridge. The deck, superstructure, and substructure elements of the bridge have an estimated remaining life of 5-10 years with no repairs or work performed.

The current load rating factor for the required HS20-44 design vehicle (semi-truck and trailer) is 0.81 per the Bridge Rating Application Database of Indiana (BRADIN), which is the governing system for all bridge load ratings in Indiana. A load rating factor less than 1.0 indicates that the design vehicle cannot safely utilize the bridge for an indefinite

period of time. The reduced load rating factor for this structure is based on the limiting load carrying capacity of the arch rings without consideration of the substructure. However, concrete filled cofferdams were installed at the piers during the 2006 rehabilitation, which applied additional unintended loads to the substructure foundations. This further reduced the safe live load carrying capacity of the structure.

The purpose of the project is to provide a crossing of the St. Joseph River that has a deck, superstructure, and substructure condition rating of at least 7 out of 9, which is considered "good" condition. In addition, the purpose of the project is to improve the load rating factor to at least 1.0 for the HS20-44 design vehicle. This project will extend the life of this crossing for a minimum of 25 years in accordance with INDOT *Historic Bridge Programmatic Agreement*.

IV. ALTERNATIVES

A virtual scoping field check was held on January 27, 2021 and a follow up virtual scoping meeting was held on February 25, 2021. (See Appendix G)

A virtual consulting parties meeting was held on May 20, 2021. (See Appendix K)

A. No Build/Do Nothing

This alternative proposes no work take place, leaving all elements in their current state. No federal funds would be expended. This alternative would result in no environmental impacts and is an avoidance alternative which would result in no impact to the historic bridge. This is a feasible alternative.

This alternative does not improve the condition of the superstructure or substructure, the load rating factor remains 0.81 for the HS20-44 design vehicle, the substructure foundations capacity are inadequate, and the current service life expectancy remains to be 5-10 years until repairs are required on the structure. This alternative is feasible, however it is not prudent since the purpose and need are not satisfied.

B1a. <u>Rehabilitation for Continued Vehicular Use Meeting Secretary of Interior's Standards</u> <u>for Rehabilitation – Partial Replacement of Arches with Foundation Strengthening</u>

This alternative would include rehabilitation of the structure for continued vehicular use for five lanes (two in each direction and a center turn lane at the north end of the bridge) across the bridge. The proposed bridge cross section will maintain the existing overall bridge width and 55'-0" clear roadway width and utilize 10" reinforced concrete vehicular/pedestrian traffic separation barrier railing on both

sides of the clear roadway, which will provide sidewalk widths of 5'-10 $\frac{3}{4}$ " and 4'-9 1/16" on the west and east side of the bridge, respectively.

The scope of the rehabilitation includes:

- Removal of the bridge deck, sidewalks, barrier curbs, railings, spandrel walls, arch fill, and displaced arch rings in Spans B and C on the east side of the bridge.
- Removal of approach pavement, sidewalks, barrier curb transitions, and curbs as necessary for removal of all arch fill.
- Removal of concrete within the pier cofferdams and cutting off of the cofferdam sheet piling within the limits of concrete removal.
- Installation of micropiles within the pier cofferdams followed by encasement in concrete to structurally connect the micropiles to the piers and strengthen their foundations.
- Placement of scour countermeasures around the piers and abutments.
- Reconstruction of arch ring segments removed in Spans B and C.
- Application of waterproofing membrane to all arch rings.
- Construction of new concrete spandrel walls, reinstalling the existing limestone fascia blocks after repair or replacement, in-kind, of deteriorated blocks.
- Placement of new arch fill.
- Placement of new concrete bridge deck and sidewalks. The sidewalks will be separated from traffic by a 34" tall, 10" wide, reinforced concrete barrier railing which will taper down to match the height of the approach curbs, similar to the existing barrier curbs.
- Placement of the two existing limestone railing panels back in their original location. Placement of new concrete railing replicating the architectural details from the 1945 Rehabilitation plans, which match the original limestone railing. Limestone blocks on railing pilasters will be reused, repaired, or replaced in-kind, depending on extent of deterioration. Ornamental lighting will be reinstalled on pier and abutment pilasters.

See Appendix C for graphical explanation of the proposed work described above.

Micropiles are proposed to strengthen the existing pier foundations, prevent further settlement, and offset the additional dead load of the concrete within the pier cofferdams which offers some scour protection and transfers the loads from the proposed micropiles to the existing piers. A preliminary analysis found that 20 - 7'' diameter micropiles driven around the perimeter of the existing pier, within the pier cofferdams, is anticipated to achieve the necessary strengthening. Micropile

installation with access from beneath the existing arches to remain is feasible based on the minimum vertical and horizontal clearances required for installation.

The existing timber piles and pier cofferdam piling are not installed deep enough to resist Q100 or Q500 scour according to the scour elevations provided in the 2006 Rehabilitation "B" Plans. Therefore, Piers 2 and 3 remain vulnerable to scour and future undermining and differential settlement. According to the 2006 Rehabilitation Plans, the Q100 scour elevation is El. 640.77 and the Q500 scour elevation is El. 637.41. The cofferdam sheet piling was installed with a bottom of piling elevation of El. 650.00. The bottom tip elevation of the existing pier timber piles is approximately El. 640.00, according to the Foundation Condition Assessment of Pier No. 3, dated December 18, 2002, prepared by Earth Exploration. Earth Exploration measured the approximate bottom tip elevation of the existing timber piles at Pier 3 in October 2002 by conducting a parallel seismic test. The existing abutment foundation depths are unknown.

Based on the scour and substructure foundation elevations presented herein, the bridge is believed to be scour critical and scour countermeasures are anticipated to be required. Based on the stream velocity from the Rehabilitation "B" Plans Class 1 riprap is proposed to be placed in accordance with IDM Figure 203-3B.

Since some of the existing arch rings, on which the current structural capacity load rating is based, will be maintained in the rehabilitated bridge the load rating factor of 0.81 for the HS20-44 design vehicle will remain unchanged. Cores were taken through the existing arches during the non-destructive testing and geotechnical investigation conducted in November 2020 (See Appendix I) which found horizontal delaminations within the arch concrete, further raising concerns of existing capacity. In accordance with Indiana Design Manual (IDM) Figure 412-2A and Figure 55-3E, since the ADT is greater than 400 vehicles per day for the urban (built-up) principal arterial route a structural capacity rating factor of 1.0 is required for a HS20-44 design vehicle. A design exception is required for this Level One Design Loading Structural Capacity criteria.

The sidewalk on the east side of the bridge does not meet current Americans with Disabilities Act (ADA) standards. The current east sidewalk width is restricted at each bridge railing pilaster with clearance between the barrier curb and pilasters varying from 3'-11 1/16" to 4'-3 7/8". Between railing pilasters there is an additional approximately 6" of width between the barrier curb and face of bridge railing. This provides a maximum sidewalk width from 4'-5 1/16" to 4'-9 7/8" in these areas. The bridge railing pilasters are located at an approximately 12'-0" spacing along the bridge with an unobstructed length of approximately 9'-4" between bridge railing pilasters. Current ADA guidelines, per the Proposed Public Rights-of-Way Accessibility

Guidelines (PROWAG), require the sidewalk to have a continuous minimum width of 5'-0" or a continuous minimum width of 4'-0" with a 5'-0" wide by 5'-0" long minimum passing space located at a 200'-0" maximum interval. To satisfy ADA requirements, the east bridge sidewalk width must be widened to one of the two available ADA compliant options.

The proposed 34" tall barrier railing will be a Hawaii Department of Transportation (HDOT) vertical faced barrier (See Appendix H) that meets Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) required by applicable design criteria for this bridge (See Appendix E). The proposed barrier railing will have a flat, non-aesthetic, face to more closely match the existing barrier curb in appearance. Pipes will be provided through the proposed barrier railing, similar to the existing barrier curb, for sidewalk drainage into the roadway gutter line. This barrier railing is 4" narrower than the existing barrier curb which allows adequate room for 5'-0" wide by 5'-0" long minimum passing spaces on the east sidewalk of the bridge, thereby meeting ADA requirements.

During construction, vehicular and pedestrian traffic is proposed to be maintained by detour. The vehicular detour will utilize West Cleveland Road, North Bendix Drive, Lincoln Way West, and Doctor Martin Luther King Jr. Boulevard and has been approved by the City of South Bend as an acceptable detour for truck traffic. The pedestrian detour will utilize East North Shore Drive sidewalk, the East Bank Trail, East Lasalle Avenue sidewalk, and Doctor Martin Luther King Jr. Boulevard sidewalk and has been verified to be ADA compliant for its full extent.

Phased construction was assessed for this and the following alternative. Phased construction is feasible for this alternative but is not for the following alternative; consequently, a detour was used for both alternatives for cost comparison. The user costs associated with maintenance of traffic were evaluated based on INDOT and Texas Department of Transportation (TXDOT) available information and were found to be approximately \$58,177,400 for a detour and \$1,642,700 for phased construction. Although there is a considerably higher user cost associated with a detour, it is still recommended for both alternatives since phased construction is not feasible for the following alternative and adds considerable construction complexity and cost to this alternative. A detour will cause some delays to medical transport services accessing the Memorial Hospital of South Bend campus located approximately 0.20 miles south of the bridge. However, with the use of unofficial local detours, those delays can be minimized. See Appendix J for further explanation regarding the feasibility of phasing, detailed user costs, and figures showing the proposed detour routes.

No permanent right-of-way is anticipated for this alternative, however approximately 0.52 acres of temporary right-of-way is anticipated for construction access. Approximately 150 linear feet of temporary and permanent stream impacts are anticipated for construction access and riprap placement, respectively. No wetland impacts are expected.

The estimated construction cost of this alternative is \$8,608,000 (See Appendix D). The expected service life of the rehabilitated bridge is 30 years with an anticipated deck, superstructure, and substructure condition rating of 7 out of 9, indicating a "good" condition. The substructure foundations will have adequate capacity for all design loads, however the load rating factor will remain 0.81 for the HS20-44 design vehicle. A single Level One design exception, for Design Loading Structural Capacity, is required for this alternative. The Level One design exception would be prepared in accordance with IDM Section 40-8.04(01) with review and approval by INDOT if this alternative is pursued. The Level One design exception is not expected to be approved, if pursued, because retention of the existing arches would prevent lifting the overweight vehicle permit restriction for this crossing. Also, advancement of the current arch deterioration and material degradation over time will further reduce load carrying capacity and result in load posting.

This alternative does not fully address the purpose and need of this project since the bridge will still have a load rating factor of less than 1.0 for the HS20-44 design vehicle. This alternative is feasible if the required design exceptions are approved by INDOT, however it is not prudent since the purpose and need are not satisfied.

See Appendix E for a summary table of the applicable Level One design criteria, the existing and proposed conditions, and if the proposed conditions satisfy Level One design criteria.

B1b. <u>Rehabilitation for Continued Vehicular Use NOT Meeting Secretary of Interior's</u> <u>Standards for Rehabilitation – Complete Replacement of Arches with Foundation</u> <u>Replacement</u>

Since the previous alternative did not satisfy the purpose and need, this alternative is a more extensive rehabilitation developed to address those items that were not sufficient in the previous alternative.

This alternative includes rehabilitation of the structure for continued vehicular use for five lanes (two in each direction and a center left turn lane at the north end of the bridge) across the bridge. Identical to the previous alternative, the proposed bridge cross section will maintain the existing overall bridge width and 55'-0" clear roadway width and utilize 10" reinforced concrete vehicular/pedestrian traffic

separation barrier railing on both sides of the clear roadway, which will provide sidewalk widths of 5'-10 $\frac{34}{7}$ and 4'-9 $\frac{1}{16}$ on the west and east side of the bridge, respectively.

The scope of the rehabilitation includes:

- Removal of all bridge elements (i.e. bridge deck, sidewalks, barrier curbs, railings, spandrel walls, arch fill, arches, substructure pedestals, and concrete filled cofferdams) to the existing foundations.
- Installation of new deep pile foundations.
- Construction of new substructure pedestals reusing existing limestone blocks at the ends.
- Construction of new arch rings and application of a waterproofing membrane on the top of arch rings.
- Construction of new concrete spandrel walls, reinstalling the existing limestone fascia blocks after repair or replacement, in-kind, of deteriorated blocks.
- Placement of new arch fill.
- Placement of new concrete bridge deck and sidewalks. The sidewalks will be separated from traffic by a 34" tall, 10" wide, reinforced concrete barrier railing which will taper down to match the height of the approach curbs, similar to the existing barrier curbs.
- Placement of the two existing limestone railing panels back in their original location. Placement of new concrete railing replicating the architectural details from the 1945 Rehabilitation plans, which match the original limestone railing. Limestone blocks on railing pilasters will be reused, repaired, or replaced in-kind, depending on extent of deterioration. Ornamental lighting will be reinstalled on pier and abutment pilasters.

See Appendix C for graphical explanation of the proposed work described above.

Since full substructure and superstructure replacement is recommended with new deep pile foundations, new substructure pedestals, new arch rings, and new concrete spandrel walls a HL-93 design vehicle in accordance with AASHTO LRFD Bridge Design Specifications, 9th Edition is recommended per IDM Figure 412-3A. Bridges designed for a HL-93 design vehicle consistently also satisfy the capacity requirements of a HS-20 design vehicle due to the similarities between vehicle loadings.

Similar to Alternative B1a, the 34" tall HDOT barrier railing will replace the existing barrier curb. See Alternative B1a above for additional information.

As mentioned above within Alternative B1a, both vehicular and pedestrian phased construction is not feasible for this alternative. A detour is required to maintain both vehicular and pedestrian traffic for this alternative.

No permanent right-of-way is anticipated for this alternative, however approximately 0.52 acres of temporary right-of-way is anticipated for construction access. Approximately 150 linear feet of temporary steam impacts are anticipated for construction access; no permanent stream impacts are anticipated. No wetland impacts are expected.

The estimated construction cost of this alternative is \$12,201,400. The expected service life of the rehabilitated bridge is 75 years with an anticipated deck, superstructure, and substructure condition rating of 9 out of 9, indicating an "excellent" condition. The substructure foundations will have adequate capacity for all design loads and a load rating factor of 1.0 or greater will be obtained for the HS20-44 design vehicle. No Level One design exceptions are required for this alternative.

This alternative fully addresses the purpose and need of this project. This alternative is feasible since the minimum design standards in the Indiana Design Manual will be met and is prudent since the purpose and need are satisfied.

See Appendix E for a summary table of the applicable Level One design criteria, the existing and proposed conditions, and if the proposed conditions meet Level One design criteria.

V. MINIMIZATION AND MITIGATION

A. Minimization

For the preferred alternative, efforts to minimize impacts to the historic bridge will include maintaining the bridge's historic aesthetics by reusing the existing limestone spandrel wall and arch ring fascia blocks, railing pilaster blocks, and ornamental lighting, maintaining the two panels of original limestone railing remaining, and replacing the existing concrete railing panels with concrete, but replicating the architectural details from the 1945 Rehabilitation plans for stone railing repairs which are detailed to match the original limestone railing elements.

The Indiana State Historic Preservation Officer (SHPO) asked during the Consulting Parties Meeting about the feasibility and anticipated life of using limestone railing throughout the bridge instead of replacing existing concrete railing with new concrete railing (See Appendix K). Panels of the original limestone railing have been removed and replaced with either limestone or concrete

beginning with the 1945 Rehabilitation. Ultimately, all but two panels have been replaced with concrete, which illustrates limestone's limited durability in this railing application adjacent to a roadway which receives deicing salts and other chemical treatments (See Appendix C). Based on rehabilitations performed on this bridge, limestone railing at this location would have an estimated service life of 40 years while concrete railing would have an estimated service life of 75 years. Also, limestone railing is more costly than concrete railing.

B. Bridge Marketing

Bridge marketing is not necessary for this Select bridge.

C. Mitigation

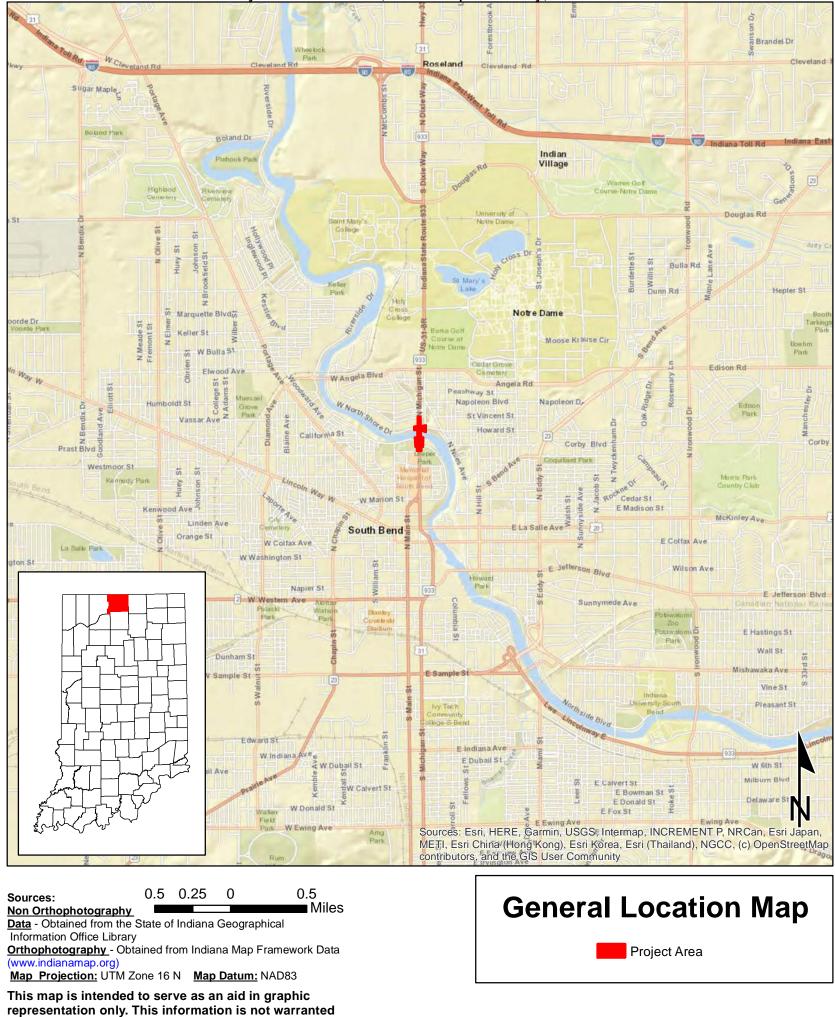
Consultation with the SHPO will take place to determine if photo documentation of the existing bridge is needed. Rehabilitation plans will be provided to the Indiana SHPO at 30%, 60%, and 90% completion for review and concurrence.

Although not required per the Historic Bridge Programmatic Agreement, as a result of consulting party input, INDOT will install interpretive signage at the project location to inform the public about the historic bridge and acknowledge its reconstruction with some original construction materials salvaged and reused.

VI. PRELIMINARY PREFERRED ALTERNATIVE

Alternative B1b, Rehabilitation for Continued Vehicular Use NOT Meeting Secretary of Interior's Standards for Rehabilitation, is recommended as both feasible and prudent and, therefore is the preliminary preferred alternative.

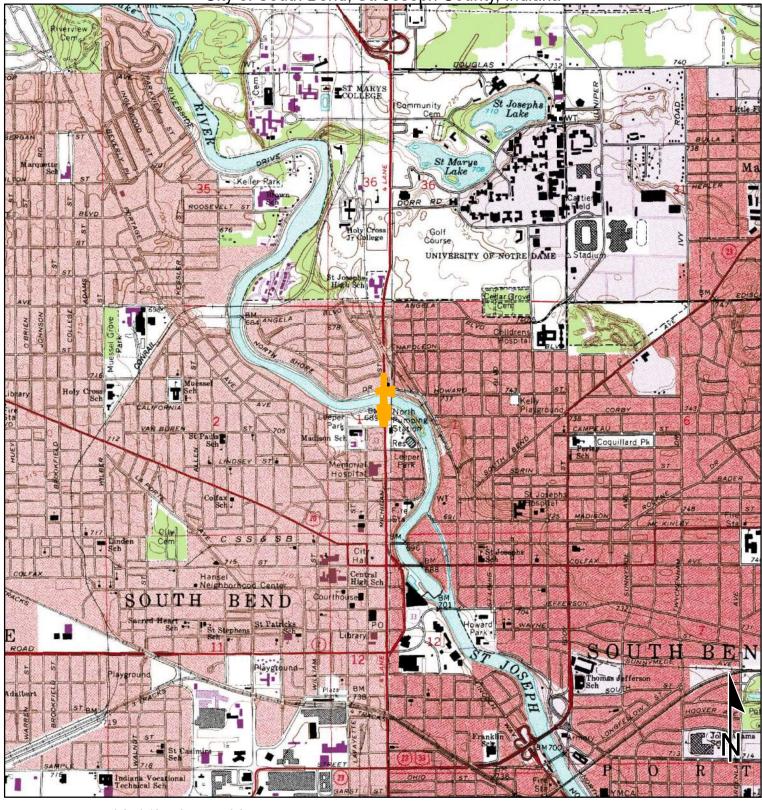
Although Alternative B1b does not meet the Secretary of Interior's Standards for Rehabilitation (SOI), the plans will be developed such that the rehabilitation will adhere "as close to the Standards as is practicable," as outlined in Attachment B of the Historic Bridge Programmatic Agreement. The existing reinforced concrete substructure units, founded on driven piling, will be replaced in-kind except with steel piles in place of timber piles. Each substructure unit will require custom design to receive the original limestone facade blocks, just as the original substructure units were designed. The conventionally reinforced concrete arches will be replaced with conventionally reinforced concrete arches matching the shape and width of the original arches. The original reinforced concrete spandrel walls, custom designed to receive the limestone facade, will be replaced with similarly custom designed spandrel walls made up of the same construction materials and built using similar cast-in-place reinforced concrete construction sequence as the original construction.



The original limestone arch ring, spandrel wall, pier, abutment, wingwall, and railing fascia will be reinstalled on the replaced reinforced concrete elements. Damaged limestone blocks will either be repaired or replaced in-kind. The replaced reinforced concrete element geometry will need to very closely match that of the original construction in order for the limestone fascia to fit properly and be reinstalled in its original shape and configuration.

See Appendix F for the Alternatives Analysis Table.

Appendix A: Maps


Des. No. 1900011 SR 933 over St. Joseph River Bridge Project SR 933 Bridge over St. Joseph River City of South Bend, St. Joseph County, Indiana

Des. No. 1900011

for accuracy or other purposes.

Des. No. 1900011 SR 933 over St. Joseph River Bridge Project SR 933 Bridge over St. Joseph River City of South Bend, St. Joseph County, Indiana

0.25 0.25 0.125 0 Sources: Miles Non Orthophotography Data - Obtained from the State of Indiana Geographical Information Office Library Orthophotography - Obtained from Indiana Map Framework Data

(www.indianamap.org) Map Projection: UTM Zone 16 N Map Datum: NAD83

This map is intended to serve as an aid in graphic

representation only. This information is not warranted for accuracy or other purposes.

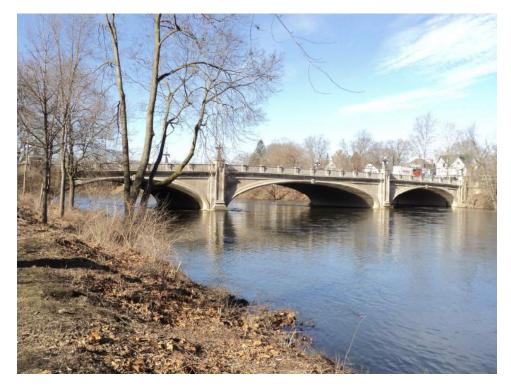
Portion of the USGS 7.5' series South Bend, Indiana topographic quadrangle showing the location of the project area.

Project Area

Des. No. 1900011 SR 933 over St. Joseph River Bridge Project SR 933 Bridge over St. Joseph River City of South Bend, St. Joseph County, Indiana

Appendix A

Appendix B: Photographs


<u>Photo 1</u>

Vantage Point: South of Bridge Direction: Looking North Description: South Approach

Photo 2

Vantage Point: Northwest of Bridge Direction: Looking Southeast Description: North Approach

<u>Photo 3</u>

Vantage Point: Southeast of Bridge Direction: Looking Northwest Description: East Bridge Elevation View

Photo 4

Vantage Point: Southwest of Bridge Direction: Looking Northeast Description: West Bridge Elevation View

Photo 5 Vantage Point: Southeast Corner of Bridge Direction: Looking Southeast Description: Leeper Park (Land Use Surrounding South End of Bridge)

Photo 6 Vantage Point: Southeast Corner of Bridge Direction: Looking North Description: East Sidewalk, Barrier Curb, and Railing

Photo 7 Vantage Point: Southwest Corner of Bridge Direction: Looking North Description: West Sidewalk, Barrier Curb, and Railing

<u>Photo 8</u>

Vantage Point: West Side of Bridge Direction: Looking North Description: Typical Decorative Lighting Post

<u> Photo 9</u>

Vantage Point: East Side of Bridge Direction: Looking Southwest Description: Typical Existing Roadway Wearing Surface

<u>Photo 10</u>

Vantage Point: East Side of Bridge Direction: Looking Northwest Description: Typical Existing Roadway Wearing Surface

<u>Photo 11</u>

Vantage Point: Beneath Span A Direction: Looking South Description: Span A Arch and Abutment 1


<u>Photo 12</u>

Vantage Point: Beneath Span A Direction: Looking North Description: Span A Arch and Pier 2

<u>Photo 13</u>

Vantage Point: Beneath Span B Direction: Looking South Description: Span B Arch and Pier 2

<u>Photo 14</u>

Vantage Point: Beneath Span B Direction: Looking North Description: Span B Arch and Pier 3

<u>Photo 15</u>

Vantage Point: Beneath Span C Direction: Looking South Description: Span C Arch and Pier 3

<u>Photo 16</u>

Vantage Point: Beneath Span C Direction: Looking North Description: Span C Arch and Abutment 4

<u>Photo 17</u>

Vantage Point: East Side of Pier 2 Direction: Looking Southwest Description: Ornate Limestone Details at Pier Pilasters (Typ. All Piers)

Photo 18

Vantage Point: Midspan at East Side of Span B Direction: Looking West Description: Ornate Limestone Keystone Block at Midspan (Typ. All Spans)

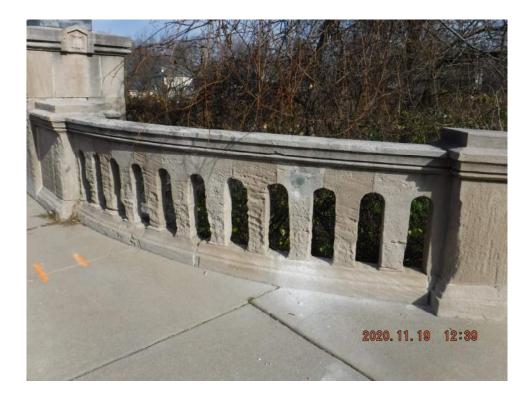


Photo 19 Vantage Point: Southeast Corner of Bridge Direction: Looking Northeast Description: Original Limestone Railing (Second Railing Panel from South)

<u>Photo 20</u>

Vantage Point: Southeast Corner of Bridge Direction: Looking Northeast Description: Original Limestone Railing (First Railing Panel from South)

Photo 21 Vantage Point: Northeast Corner of Bridge Direction: Looking East Description: Concrete Railing from Rehabilitation Prior to 2006 (Typ.)

Photo 22

Vantage Point: West Sidewalk over Span B Direction: Looking West Description: Concrete Railing from 2012 Rehabilitation (Typ.)

Photo 23 Vantage Point: Northeast Corner of Bridge Direction: Looking Southwest Description: Curb Ramp at Intersection with North Shore Drive

<u>Photo 24</u>

Vantage Point: Northwest Corner of Bridge Direction: Looking South Description: Curb Ramp at Intersection with North Shore Drive

Photo 25 Vantage Point: West Side of Pier 2 Direction: Looking North Description: Sag in Limestone Coping Blocks at Middle of Span B

<u>Photo 26</u>

Vantage Point: East Side of Pier 3 Direction: Looking South Description: Sag in Limestone Coping Blocks at Middle of Span B

Photo 27 Vantage Point: East Side of Middle of Span B Direction: Looking Northwest Description: Patched Gap in Railing Pilaster

<u>Photo 28</u>

Vantage Point: Pier 3 beneath Span B Direction: Looking South Description: Arch Separation

Photo 29 Vantage Point: Pier 2 beneath Span B Direction: Looking North Description: Fiber Reinforced Polymer Fallen Off and Arch Separation

<u>Photo 30</u>

Vantage Point: Pier 3 beneath Span C Direction: Looking North Description: Arch Separation

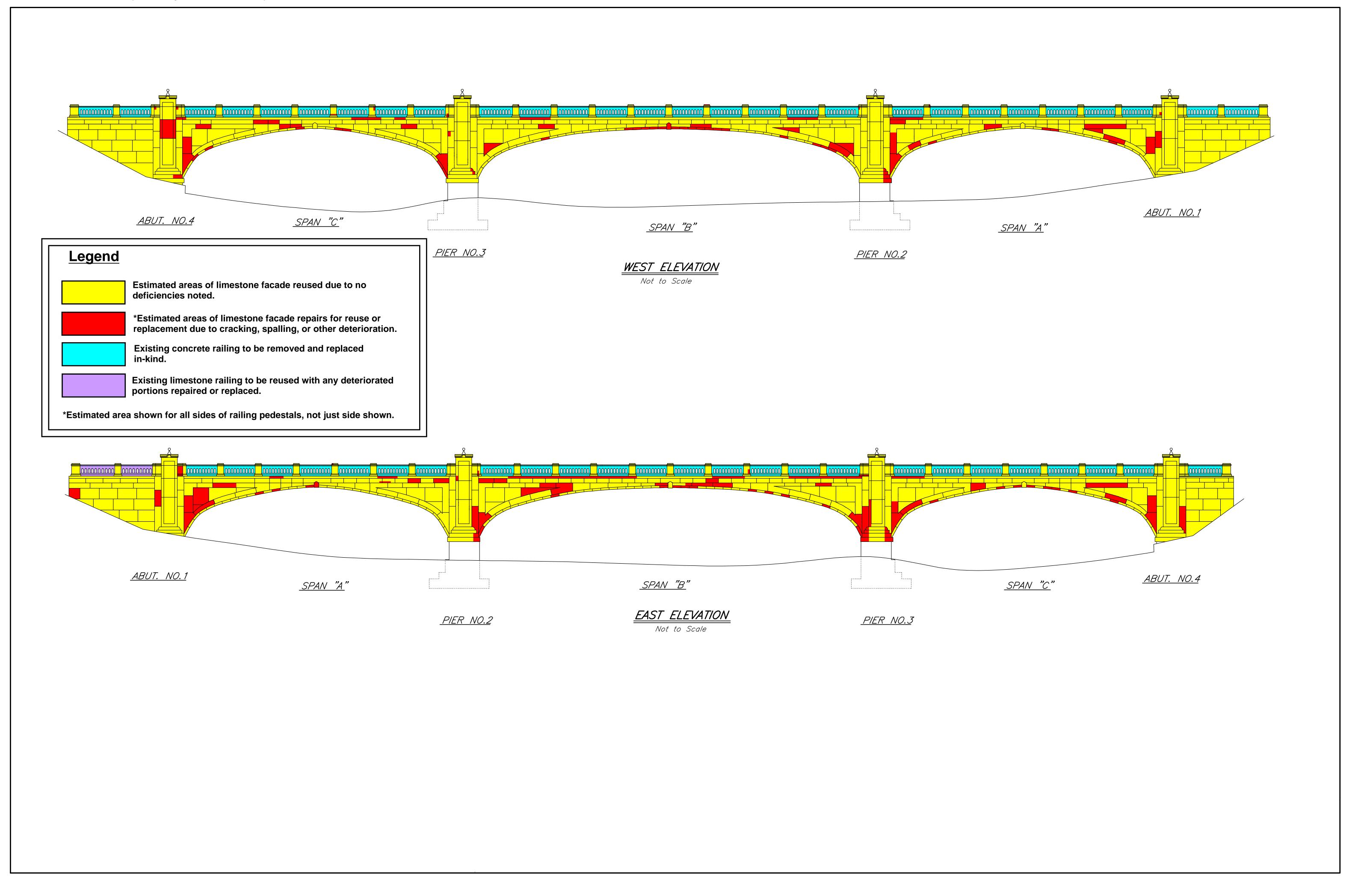
<u>Photo 31</u>

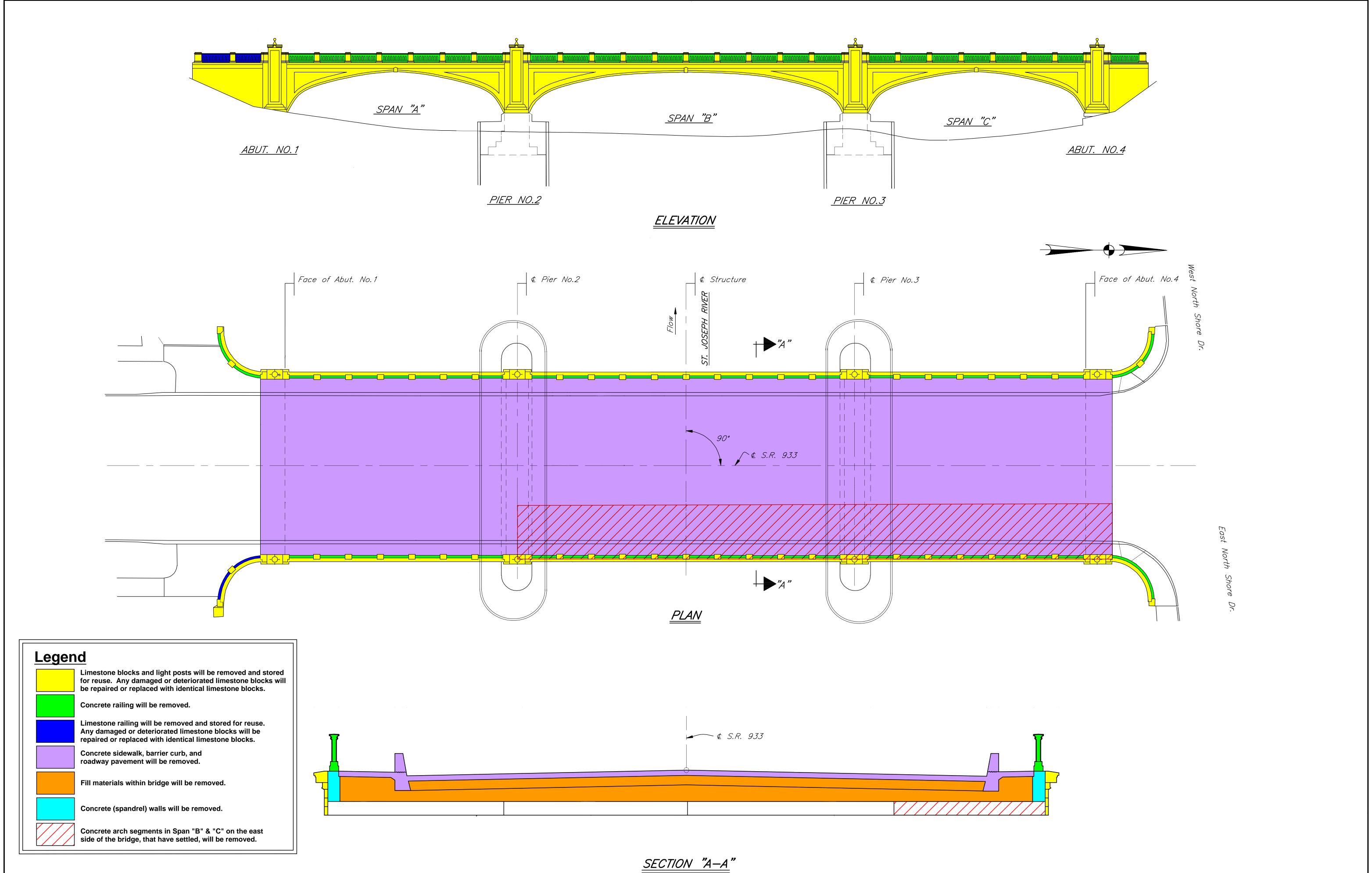
Vantage Point: East Side of Pier 2 Direction: Looking Southwest Description: Spalling of Limestone Block (Typ.)

<u>Photo 32</u>

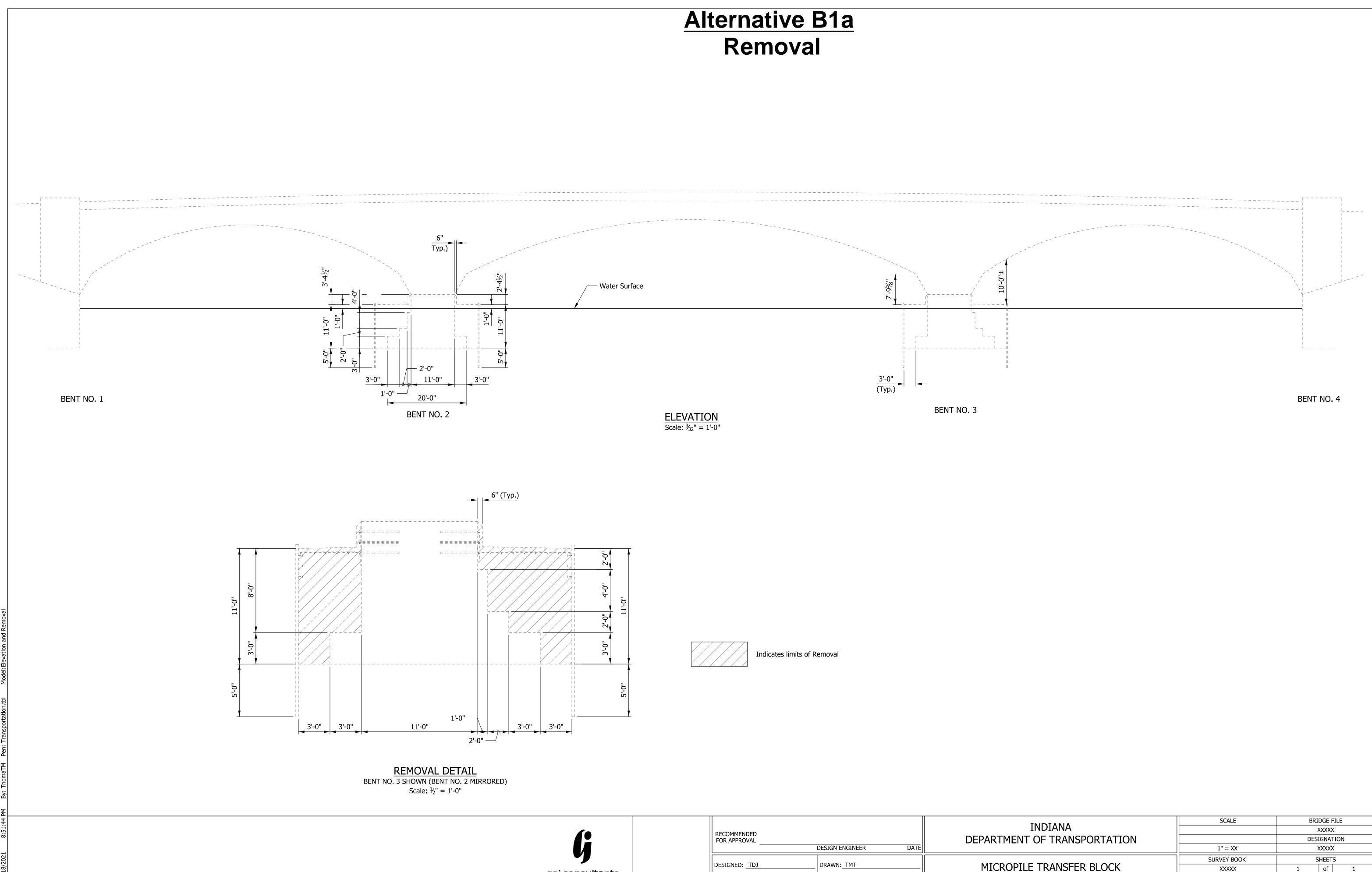
Vantage Point: East Side of Span A Direction: Looking West Description: Cracking of Limestone Block (Typ.)

<u>Photo 33</u>

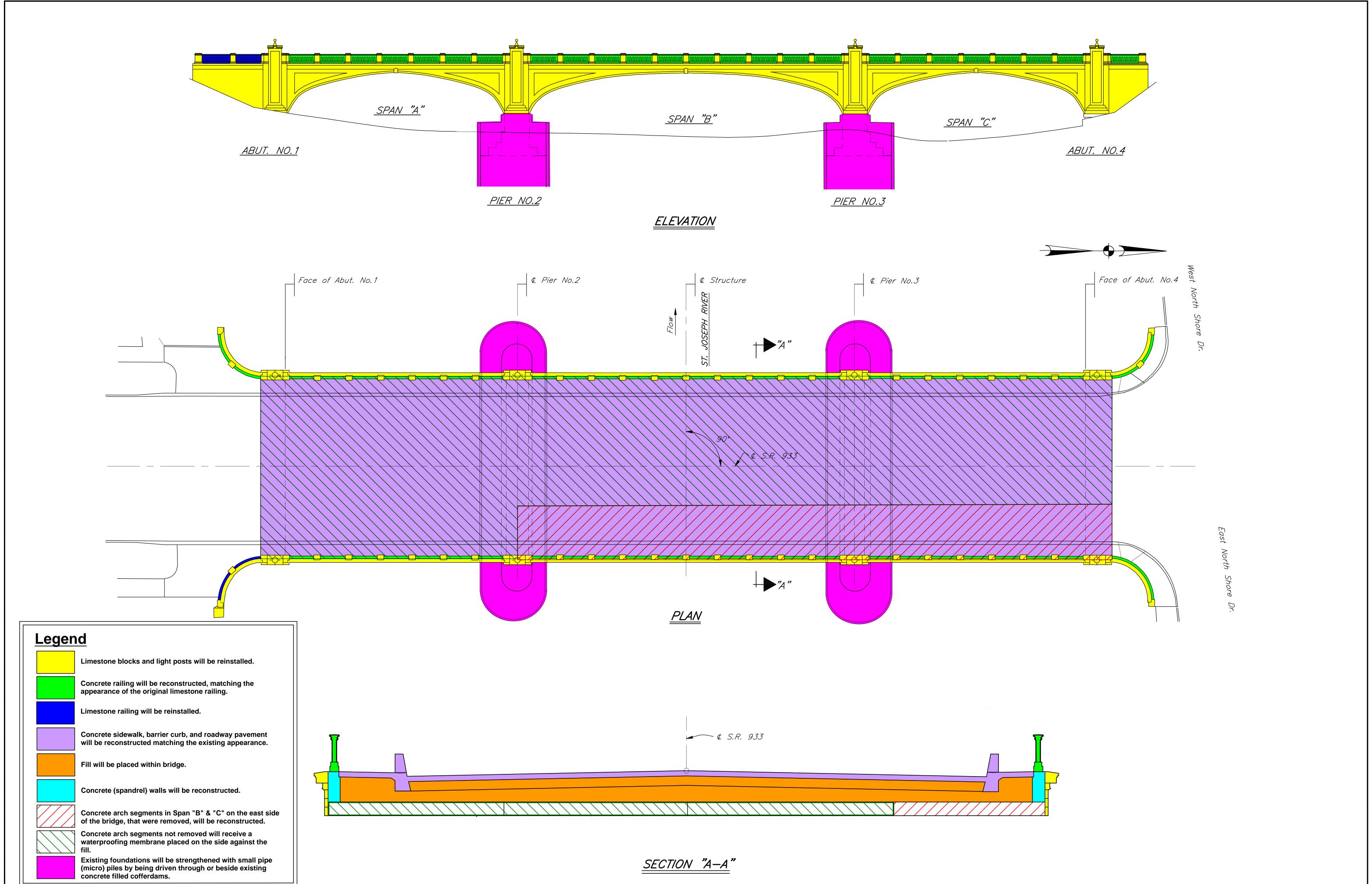

Vantage Point: West Side of Span C Direction: Looking East Description: Failing Grout at Joints between Limestone Blocks (Typ.)

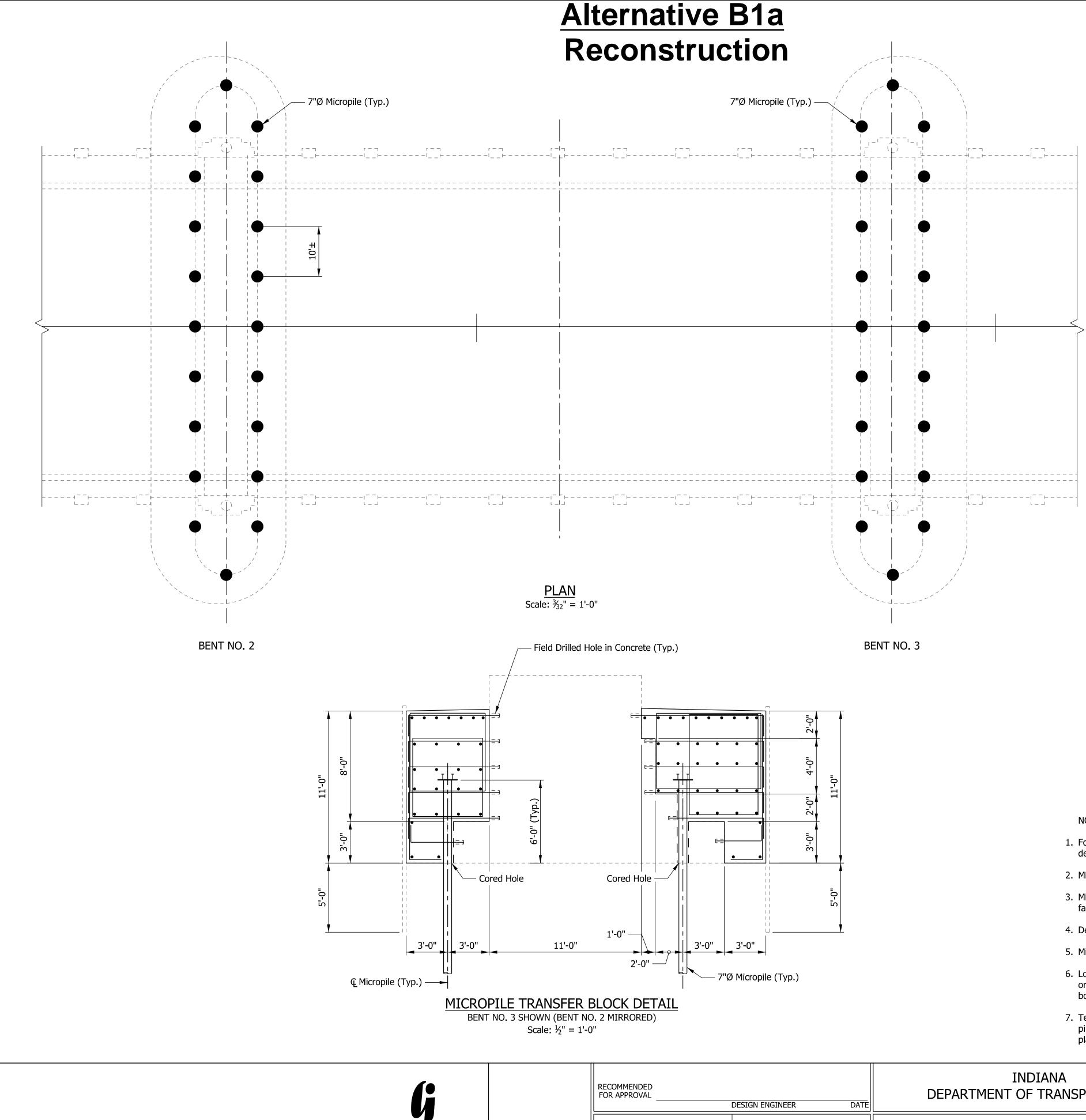


<u>Photo 34</u>


Vantage Point: East Side of South Abutment (Abutment 1) Direction: Looking West Description: Leakage Present Between Limestone Blocks, Cracking, Spalls Appendix C: Graphics/Drawings

Limestone Conditions and Recommendations (Based on 11/18/2020 Inspection by Lochmueller Group, Inc.)


Alternative B1a Removal



				SCALE	BRIDGE FILE
	RECOMMENDED		INDIANA		XXXXX
	FOR APPROVAL		DEPARTMENT OF TRANSPORTATION		DESIGNATION
		DESIGN ENGINEER DATE		1" = XX'	XXXXX
•				SURVEY BOOK	SHEETS
gai consultants	DESIGNED: TDJ	DRAWN: TMT	MICROPILE TRANSFER BLOCK	XXXXX	1 of 1
garconsultants			PIER DETAIL	CONTRACT	PROJECT
	CHECKED:	CHECKED:		XXXXX	XXXXX

Appendix C

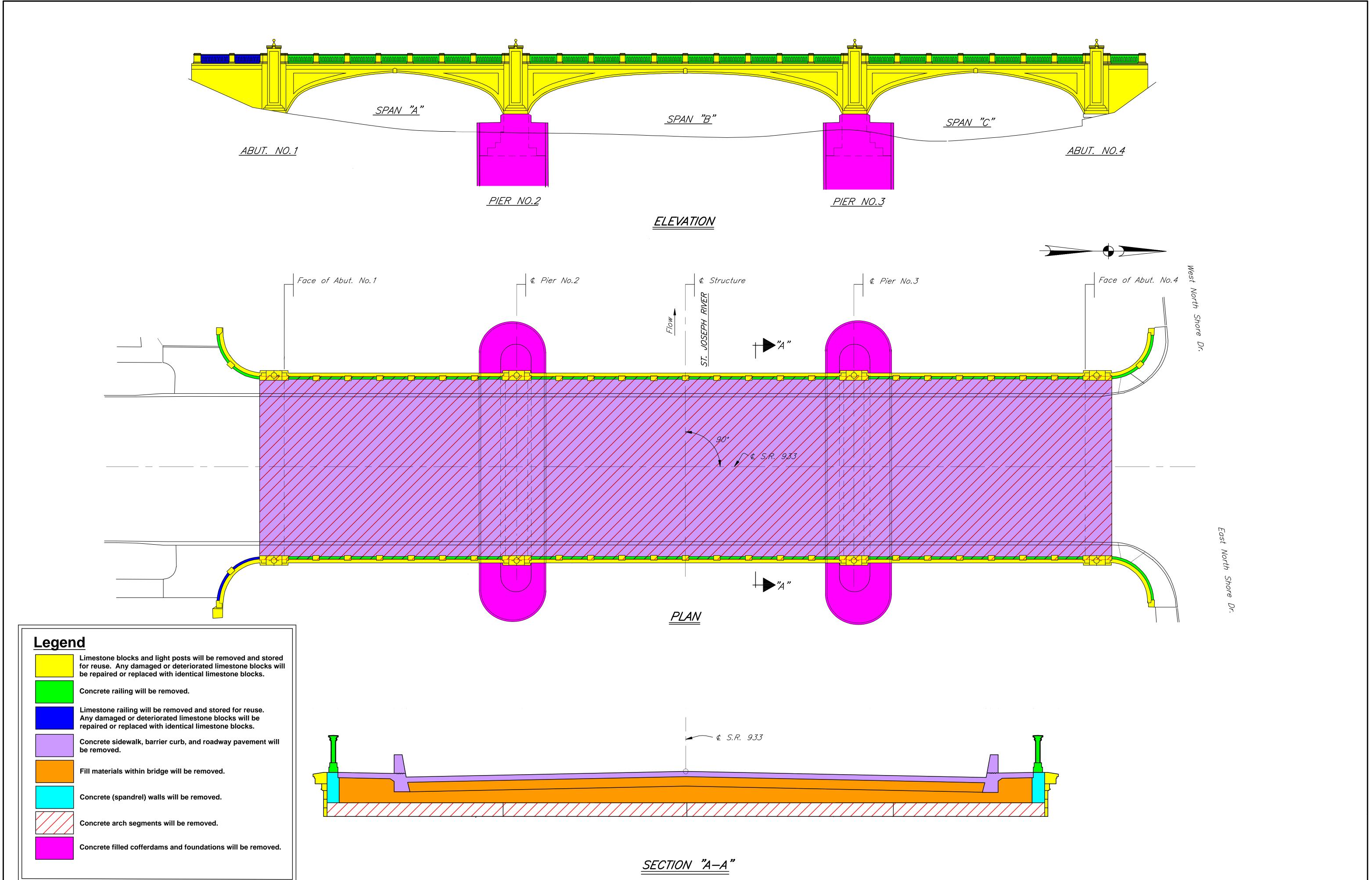
Alternative B1a Reconstruction

gai consultants

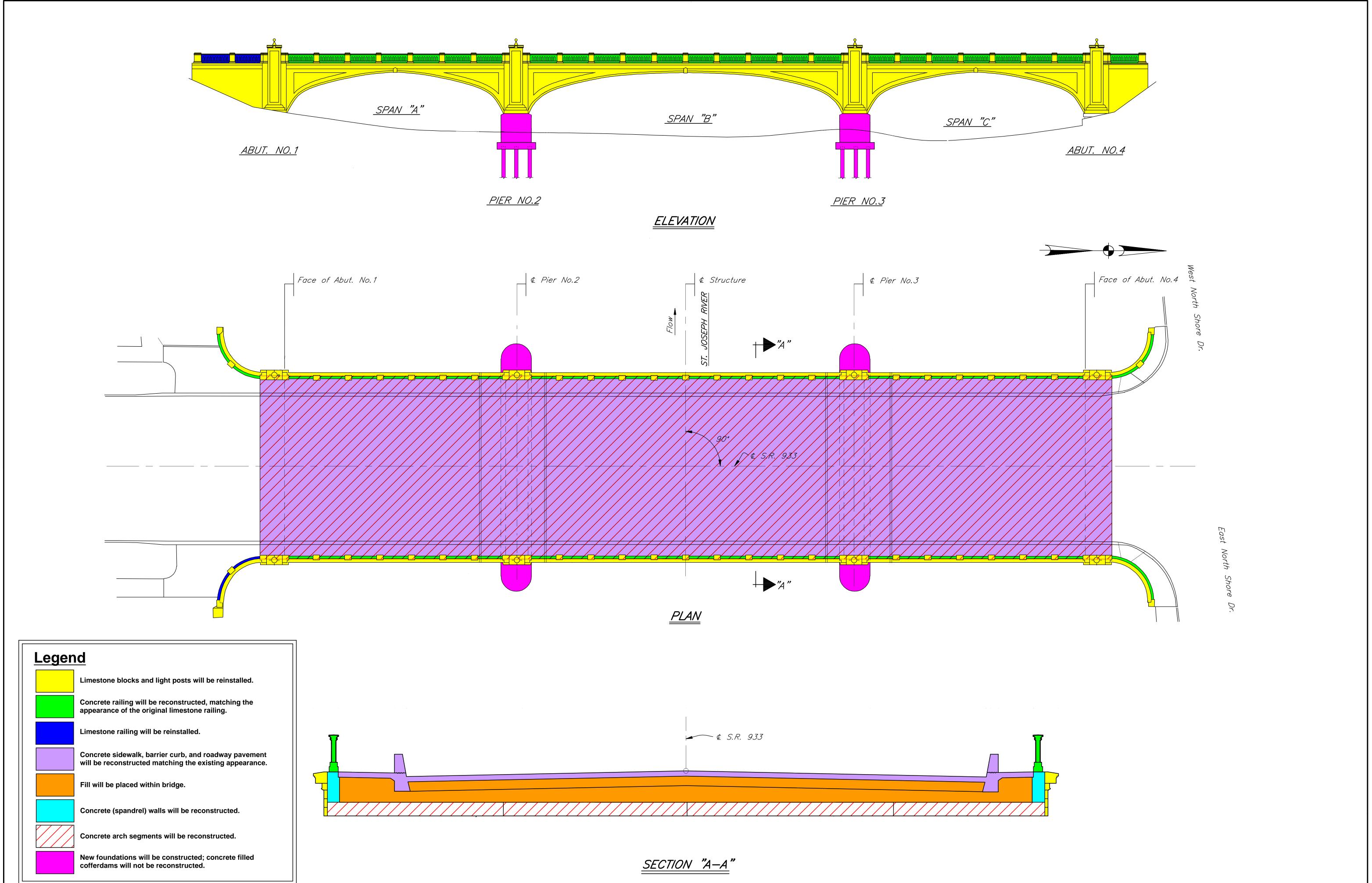
Appendix C

DESIGNED: TDJ

CHECKED:

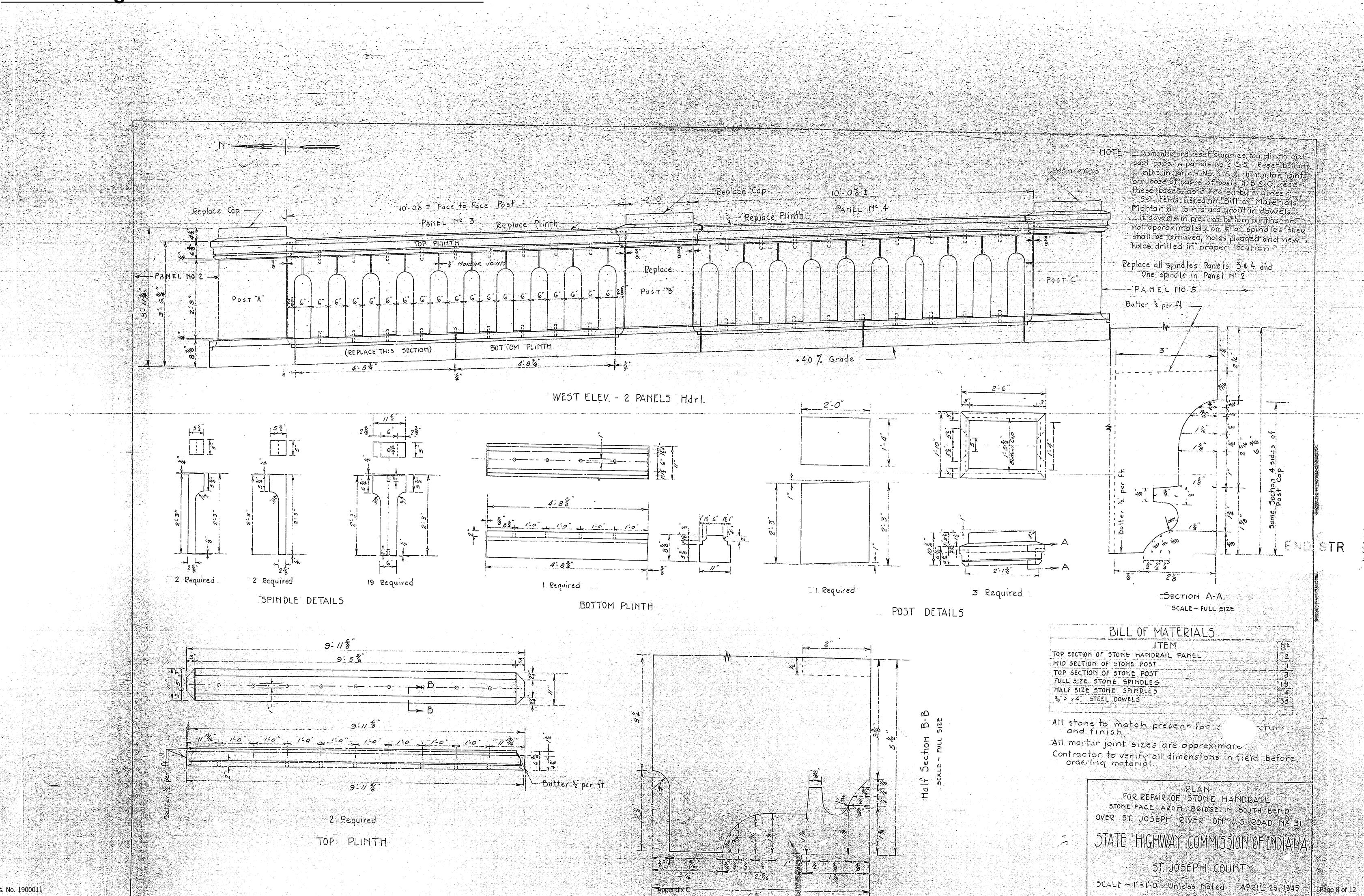

DRAWN: TMT

CHECKED:


NOTES:

- 1. For preliminary analysis, micro-piles assumed at 7" diameter and 150k allowable service design load per micro-pile.
- 2. Micro-pile depth assumed at 50' below existing footing.
- 3. Minimum clearance window for installation assumed at 2' laterally from existing vertical face and 9' vertically from top of micro-pile to overhead obstruction.
- 4. Desired overhead vertical clearance is 14' for more cost effective installation.
- 5. Minimum transfer block concrete strength assumed at 5,000 psi
- 6. Load transfer to existing foundation to be provided by field drilled holes with epoxy dowels or Dywidag Bars placed through cored holes in existing foundation or a combination of both.
- 7. Temporary cofferdam to be constructed approximately 2' minimum outside existing sheet piling location. Portion of existing sheet piling below bottom of foundation shall remain in place.

	SCALE	BRI	DGE F	ILE
INDIANA			XXXXX	
PARTMENT OF TRANSPORTATION		DES	IGNAT	TON
	1" = XX'		XXXXX	,
	SURVEY BOOK	S	HEET	S
MICROPILE TRANSFER BLOCK	XXXXX	1	of	1
PIER DETAIL	CONTRACT	P	ROJEC	Т
	XXXXX		XXXXX	,

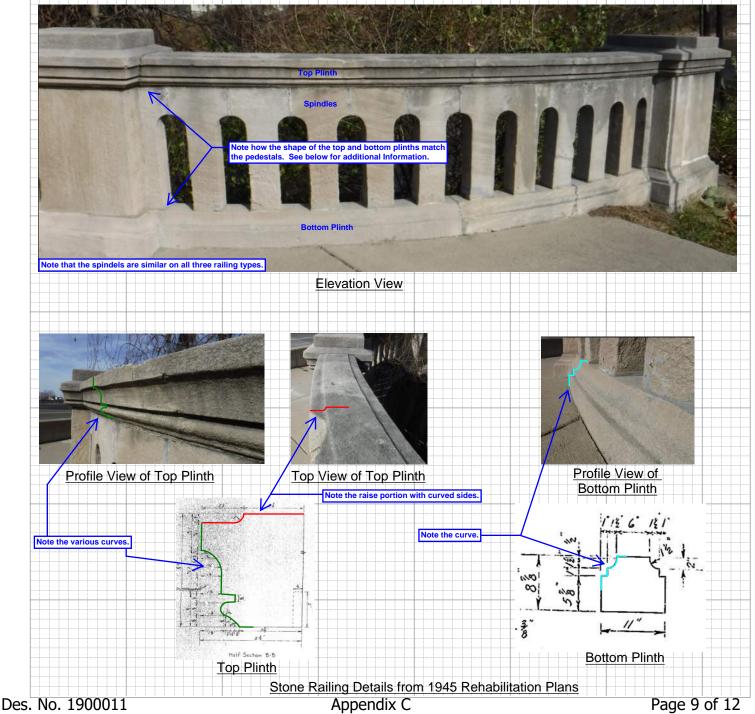


Alternative B1b Removal

Alternative B1b Reconstruction

Stone Railing Details from 1945 Rehabilitation Plans

6%

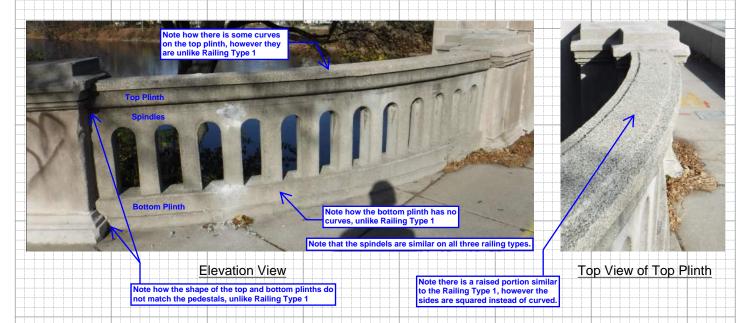

PROJECT NAME SR	933 (Michigan Road)	over St. Joseph River
DES/PROJECT NUMBE	ER <u>1900011</u>	
LOCH GROUP PROJEC	T NUMBER <u>120-300</u>	1-01B
MADE BY ACS	DATE	07/01/2021
CHECKED BYMAR	DATE	07/01/2021
SHEET1	OF	2

Comparison of Railing Types Currently on the Bridge

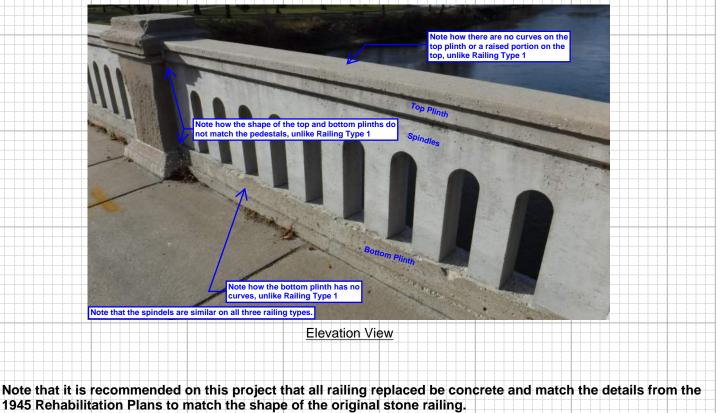
There are 3 different types of railings, disregarding the barrier curb between the sidewalks and travel way, currently on the bridge carrying SR 933 (Michigan Road) over St. Joseph River. Below are photos, plan details (as available), and descriptions to explain their differences and what is preferred for replacement of railings as part of this proposed project.

Railing Type 1 - Original Stone Railing

There are only two panels of the original stone railing remaining on the bridge, both at the southeast corner of the bridge at the end of the railing. Please see below for specific aesthetics of this railing for comparison to the following two railing types on the bridge.



PROJECT NAME	SR 933 (Michig	an Road) ov	ver St. Joseph River
DES/PROJECT N	UMBER <u>190001</u>	1	
LOCH GROUP PR	ROJECT NUMBER	R <u>120-3001-</u>	01B
MADE BYA	ACS	DATE	07/01/2021
CHECKED BY	MAR	DATE	07/01/2021
SHEET2	OF	2	


Railing Type 2 - Concrete Railing at Corners

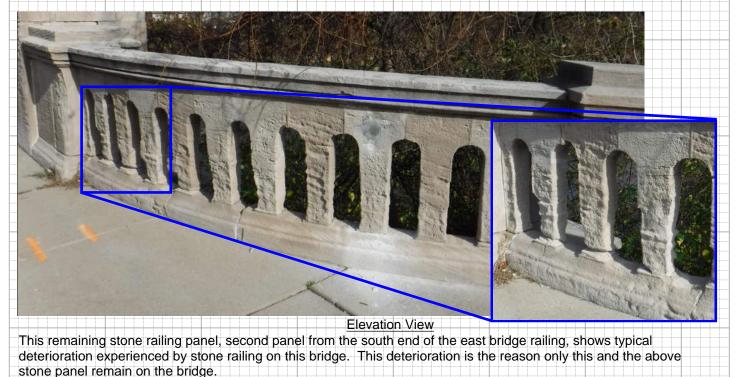
There are six panels of this concrete railing remaining on the bridge, they are located at the southwest, northwest, and northeast corners of the bridge at the end of the railing. Please see below for specific aesthetics of this railing and its comparison to the Railing Type 1 (original).

Railing Type 3 - Concrete Railing Elsewhere

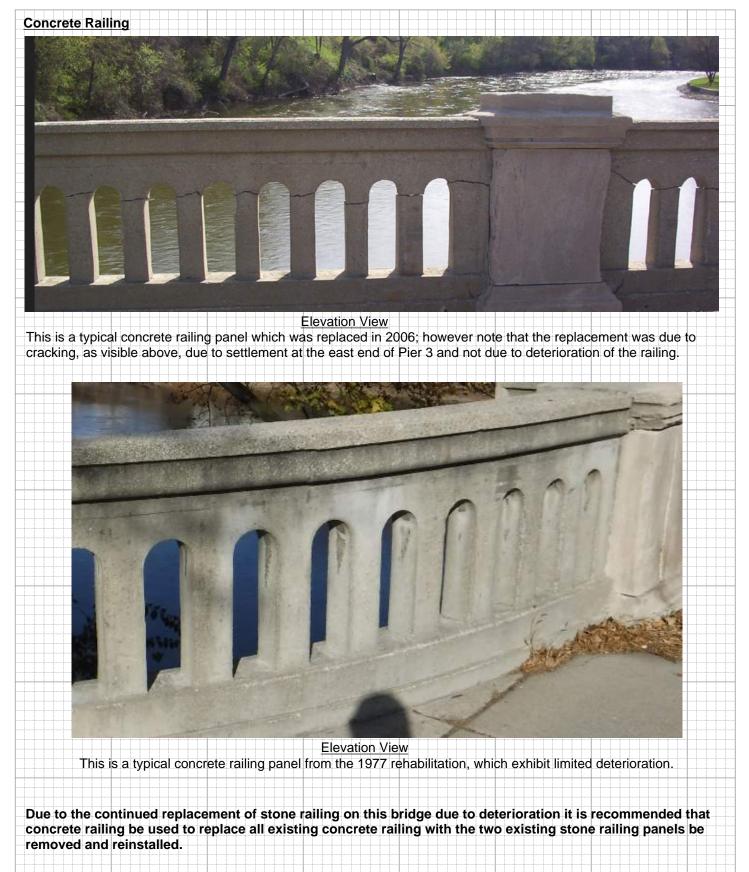
All remaining railing panels which are not Type 1 or 2 are this Type 3 concrete railing. Please see below for specific aesthetics of this railing and its comparison to the Railing Type 1 (original).

PROJECT NAM	E SR S	33 (Michi	gan Road	d) over St. Joseph River
DES/PROJECT	NUMBE	R <u>190001</u>	1	
LOCH GROUP	PROJEC	T NUMBE	R <u>120-30</u>	001-01B
MADE BY	ACS		DATE	07/01/2021
CHECKED BY	MAR		DATE	07/01/2021
SHEET	1	OF		2

Comparison of Stone and Concrete Railing Durability


The stone railing, installed during the original construction in 1914, has deteriorated and required replacement starting with the 1945 Rehabilitation. All stone railing panels, except two in the southeast corner of the bridge, have been replaced with concrete railing.

Stone Railing


Elevation View

This remaining stone railing panel, at the south end of the east bridge railing, shows limited deterioration. This limited deterioration is believed to be due to it's location further from the roadway than nearly all other railing panels, limiting the amount of salt spray and other roadside chemicals.

PROJECT NAME SR 933 (Mic	higan Road) over St. Joseph River
DES/PROJECT NUMBER 1900	0011
LOCH GROUP PROJECT NUME	BER 120-3001-01B
MADE BYACS	_ DATE07/01/2021
CHECKED BY MAR	DATE07/01/2021
SHEET 2 C	DF2

Appendix D: Cost Estimate and Quantity Calculations

Number Description I								natives	•
Number Prior March Macro Priors Number	Pay Item		Supplemental						
Display, MongQUARON AND PORTONICATION IS	Number	Pay Item Description		Units	Unit Price	Quantity		Quantity	Extended
Distantio Distantio <thdistantio< th=""> <thdistantio< th=""> <thd< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>\$188,500.00</td></thd<></thdistantio<></thdistantio<>					-				\$188,500.00
DBDBDD DBDDDD DBDDDD DBDDDD DBDDDD DBDDDD DBDDDD DBDDDDD DBDDDD DBDDDDD DBDDDDD DBDDDDD DBDDDDD DBDDDDD DBDDDDD DBDDDDD DBDDDDD DBDDDDDD DBDDDDDDDDDDD DBDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD									\$75.000.00
Signam Picker Structure Revox In No. In Picker Structure Revox Signam Constructure Revox Constructure Revox Constructure Revox									\$59,280.00
392 2010 DERVOUS CONNENT OF ALMONY Section Sect	202-51328	PRESENT STRUCTURE, REMOVE PORTIONS		LS	-	1	\$500,000.00	-	-
SEGUON DECONNEND COMMON DOM PAGE SPRADE PAGE SPRADE PAGE SPRADE 252.1005 TOMMANDEL MANDELLATION TOME TATORA 15 - 1 SECUND							-		\$700,000.00
305-1210 TORMANNERS MANAGAMENT PLOCET 000 \$1.000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000									
35:2016 Sincer Market Baskamber Tree Landson Series 1 1 1 1 1 35:2020 25:2016 Sincer Market Tree Landson Series CS 5:2010 1 5:2000 1 5:2000 25:2016 Sincer Market Tree Landson Series CS 5:2010 1 5:2000 1 5:2000 20:2015 Sincer Market Tree Landson Series CS 5:2010 1 5:2010 1 5:2010 1 5:2000 1 5:2010 1 5:2010 1 5:201 1:2010 1:2010 1:2010 1:2010 1:2010 5:201					-				
350 130 Section B Section B<									\$62,700.00
355.3155 COPPERAM 11 1 570.000.00 1 570.000.00 1 570.000.00 110.016.00 110.01 110.016.00 110.01					-	1			\$20,000.00
307 0985 306604C TRAINED, TYPE C 596 5150 2096 5120000000 5156 516,0000 5166 516,0000 5166 516,0000 5166 516,0000 5166 516,0000 5166 516,0000 5166 516,0000 516 516,000 516 516,000 516 516,000 516 516,000 516 516,000 516 512,000 516 512,000 616 511,010 616 511,010 616 511,010 616 511,010 616 511,010 616 512,000 616 512,000 616 512,000 616 512,000 616 512,000 616 512,000 616 512,000 616 512,000 616 512,000 616 512,000 616 512,000 512					\$75.00	-	-		\$64,200.00
31. 08056 SIMUCIUM BACKFUL (WF 3 SIMUCIUM BACKFUL (WF 3) SIMULIUM BACKFUL (WF 3)									\$200,000.00
383-864 SIGADAS 577.250.00 790 577.250.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
38-6805 Malk Mich, ThadsTROM 976 976 978 55,17.00 796 55,17.00 796 55,17.00 796 55,17.00 796 55,17.00 796 55,17.00 780 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 61 51,17.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 51,47.00 70 71,47.00 71 71,47.00 71 71,47.00 71 71,47.00 71 71,47.00 71 71,47.00 71 71,47.00 71 71,47									
Bit 1058 Derit Abs 2004 Bit 1155 Derit 2004 Statut 2004 <									\$5,173.00
BUILDIN ADPARAIT SALANT IFT S1.25 440 S562.30 605511 ADPART FOR ACC ADT S55 S52.00 720 S1.478.00 730 S1.578.00 740 S2.578.00 740 S2.578.00 740 S2.780.00		QC/QA-HMA, 3, 70, SURFACE, 9.5 mm					\$13,176.00		\$13,176.00
360.652.1 APAULTOR TACK DAT 975 \$1.202 779 \$1.478.00 779 \$1.478.00 50.632.3 CGPACPC 12 N. 975 \$1.600.70 971 \$1.518.00 168 \$11.55.00 1485 \$11.85.00 1485 \$11.85.00 1485 \$11.85.00 1485 \$11.85.00 1485 \$11.85.00 188 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 18 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100 \$11.85.00 11.85 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100 \$11.85.00 100.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$1,125.00</td></td<>									\$1,125.00
90:06:02 0C/04-PCCP [2: M. 90:02 514.972.0 1802 514.972.0 06:06:00 01:07MRCTON LONT HT 97:0 541.00 1848 511.185.0 1848 511.185.0 1848 511.185.0 1848 511.185.0 1848 511.185.0 1848 511.185.0 1848 511.185.0 1848 511.185.0 1848 511.185.0 1848 511.185.0 1848 511.185.0 187 510.00 187 510.00 187 510.00 187 510.00 187 510.00 187 510.00 187 510.00 197 513.057.00 1 512.05.0 1 512.05.00 1 512.05.00 1 512.05.00 1 512.00.0 1 512.00.0 1 512.00.0 1 512.00.0 1 512.00 1 512.00 1 512.00 1 512.00 1 512.00 1 512.00 1 512.00 1 512.00 1 512.00 1 512.00 1 512									
50.054.00 1 CONTRACTION LOWT 1446 \$11,85.0 1485 \$11,85.0 6040000 SIGUALL, CONCRETE 505 \$170,00 330 \$31,85.0 530,800.0 \$8 \$38,800.0 \$8									
60-06070 DIRUMAL, CONCRETE Syst 543.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 60.00 53.00 60.00 53.00 60.00 53.00 60.00 53.00 60.00 53.00 77.00 53.00 77.00 53.00 77.00 53.00 77.00 53.00 60.00 53.00 60.00 53.00 60.00 53.00 60.00 53.00 60.00 77.00 53.00 10.00 543.00 10.00 543.00 10.00 543.00 10.00 543.00 10.00 543.00 10.00 55.00 80.00 53.00 10.00 55.00 10.00 55.00 10.00 55.00 10.00 55.00 10.00 55.00 10.00 55.00 10.00 55.00 10.00 55.00 10.00 55.00 10.00 10.00 10.00 10.00 10.00 10.00 10									\$31,185.00
B04-0808 CVRB AAM, COUNTRY 534 538 538.00 58 50.8000 B04-0808 CVRD, RAMAY, COUNTRY UT \$55.00 8 \$51.8000 6 51.8000 6 51.8000 8 \$51.8000 6 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 51.8000 60 60 51.8000 60 60 60 60.8000 60			1						\$33,957.00
050-0227 CMB, REMOVE 1FT 952-002 787 \$156,7500 787 \$156,7500 056-0320 CMB, CORKETTE 1FT \$156,000 254.5 \$190,875.00 - - 051-050 CMB, CORKETTE 1FT \$156,000 254.5 \$190,875.00 - - 051-050 MOBILIZATION AND DEWOBILIZATION FOR SEEDING 155 \$54,000 12 \$552.00 1 \$552,000 - - - \$51,000 B00 \$51,000 B00 - - - \$51,000 B00 - - - 260,000,00 - - - 260,000,00 - - 4 \$51,000,00 - - 4 \$51,000,00 - - 4 \$51,000,00 - - 4 \$51,000,00 - - 4 \$51,000,00 - - 4 \$51,000,00 - - 4 \$51,000,00 - 160,00 4 \$51,000,00 - - 160,000,00	604-08086			SYS	\$170.00	58		58	\$9,860.00
067-06120 CUME, CONCRETE 0 40 52,700.00 40 52,700.00 540 5300.875.00 - - 051-05388<									\$1,080.00
Bit-Bits Bit PRAM, CLASS 1 TON 975.00 2245 \$19.0975.00 Bit-J32SI GETCRETTER FOR REPARATIVE 3 SYS \$4.00 2265 \$9.060.00 S21-0056 MULCATION ROD SEEDING EACH \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$952.00 1 \$160.00 1 1 \$950.00 1 1 \$150.00 1 \$160.00 1 \$160.00 1 \$160.00 1 \$160.00 1 \$160.00 1 \$160.00 1 \$150.00 1 \$150.00 1 \$150.00 1 \$150.00 1 \$150.00 1 \$150.00 1 \$150.00 1 \$150.00 1 \$150.00			-						\$19,675.00
Dist-1232 FORT THE FOR BRPARP TYPE 3 P S S 42.00 AD3 S 542.00 I S 562.00 I I I S 562.00 I I <ths 562.00<="" th=""> <thi< th=""> I</thi<></ths>						-		-	
Bigl: Quity Model McBellization For SEEDING EACH 4542.00 1 5452.00 1 5452.00 Consober Municable Steining U Syst Abo Bay Syst Abo Syst Abo </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
TPL: TOT: STAD Dot: - 100 3516.000 - - - 100 3518.000 3518.000 - - 100 3518.000 - - 100 3518.000 - - 100 3518.000 - - 100 3518.000 - - 100 3518.000 - - 100 3518.000 - - 100 3518.000 - - 100 3518.000 100									
D13-2000X MICROPUL TESTING ISUM . 1 560.000.00 . . D71-005T EACH \$4,000.00 . . 220 \$15,000. D71-005T TEST PILE, DYNAMIC, PRODUCTION ILPT \$20,00 . . 4 \$15,000. D71-005B TEST PILE, DYNAMIC, PRODUCTION EACH \$3,000.00 . . 4 \$15,000. D71-05BS TEST PILE, DYNAMIC, PRODUCTION EACH \$3,000.00 . . 162 \$17,820.00 D70-05975 PILS, DYNAMIC, PRODUCTION EACH \$450.00 . . 150.716.10 . 150.716.10 . 151.726.00 . . 1252.65 \$13,172.40 . . 1252.65 . 1252.65 \$13,172.40 . . . 150.720.00 . . 1252.65 . . 150.720.00 <t< td=""><td>621-06560</td><td>MULCHED SEEDING U</td><td></td><td>SYS</td><td>\$6.00</td><td>89</td><td>\$534.00</td><td>89</td><td>\$534.00</td></t<>	621-06560	MULCHED SEEDING U		SYS	\$6.00	89	\$534.00	89	\$534.00
P01-06011 PVANMCF/IEL DONATST EACH \$4000.00 . . 4 \$510.000.0 P01-05057 FEST FILE, DVNAMIC, RESTRIKE EACH \$510.000.0 . . 4 \$512.000.0 P01-05058 FEST FILE, DVNAMIC, RESTRIKE EACH \$510.000.0 . . 4 \$512.000.0 P01-05088 FEST FILE, DVNAMIC, RESTRIKE EACH \$510.000.0 . . 488.000.0 P01-05087 FILE, DVNAMIC, RESTRIKE EACH \$510.000.0 . . 888.000.0 P01-05017 COMERETA, SUBSTRUCTURE EACH \$540.00.0 40 \$151.000.0 . . 151.000.0 . . . 151.000.0 . <td></td> <td></td> <td></td> <td></td> <td>\$165.00</td> <td></td> <td></td> <td>-</td> <td>-</td>					\$165.00			-	-
D2-05927 TEST PILE, DYNAMC, PRODUCTION IFT S70.00 240 512,000. D1-059587 PILE, SHOR, PILZ X74 EACH \$310,000 4. \$12,000. D1-059583 PILE SHOR, PILZ X74 IFT \$560.00 830.0 \$488,000. D2-059578 PILE SHOR, MPI ZX 74 IFT \$560.00 22786 \$134,555.00 21786 \$130,756.00 21786 \$130,756.00 1.5 \$130,756.00 40 \$151,000.0 1. \$150,000.0 1. \$150,000.0 825,655.00 21786 \$151,000.0 1. \$150,000.0 825,655.00 212,65 \$12,27,64 \$12,27,64 \$12,27,64 \$12,27,65 \$12,27,65 \$12,07,00 26,35 \$57,970.0 26,35 \$57,970.0 26,35 \$57,970.0 26,35 \$57,970.0 26,35 <							\$60,000.00		
P210 0593 TEST PILL, DYNAMIC, RESTRIKE EACH EACH S10000 4 S127820 D10 05983 PILE, STELE, H, P12 X74 ITT 560.00 8100 5485.000 7.0 573.00 21786 513.07.16.0 5485.000 7.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>							-		
Picto Sea Pict Sec Pict X 74 EACH Fill X 74 070-069378 Pict Set H, HP 12 X 74 ILT \$60.00 - - 162 \$132,556.00 070-029375 WATERPROFING MEMBANE SYSTEM SFT 56.00 22476 \$134,056.00 40 \$131,000.00 072-03937 DERES NORME IS - 1 \$150,000.00 1 \$150,000.00 072-03937 DERES NORME CYS \$980,000 - - 828,6 \$322,656.00 072-03155 CONCRETE, A. SUBSTNUCTURE CYS \$980,00 - - 263,5 \$57,970.00 072-51365 CONCRETE, G. SUBSTNUCTURE CYS \$250,00 - - 263,5 \$57,970.00 072-51365 CONCRETE, G. SUBSTNUCTURE CYS \$250,00 70,7 \$253,255.00 0.002,8 \$252,552,00 206,42 \$128,952,00 757,533,558,00 767,533,580,00 767,533,580,00 767,533,580,00 767,533,580,00 767,533,580,00 767,533,580,00 767,533,580,00 767,533,580,00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>							-		
70.95700 PILE_STREEL H, HP 12 X 74 IFT 550.00 8100 \$5488,000.01 70.020293 MATERROOTING MEMBARNE SYSTEM IST S.50.0 22242 S1343,556.0 212786 S1343,556.0 70.02037 CORRETOROTING MEMBARNE SYSTEM IST S150,000.0 1 S150,000.0 1 S150,000.0 1 S150,000.0 1 S122,65 S123,756.0 12786 S122,65 S122,756.0 1 0 S12,000.0 1 S122,65 S122,756.0 1 0 S12,000.0 1 S122,650.00 1 - 8836.0 S122,650.00 1 - 7 70.000.0 S12,000.00 1 - - 7.00.000.000.000.0 - - 7.00.000.000.000.000.000.000.000.000.00							-		\$17,820.00
TRADBOR CORE HOLE IN CONCRETE EACH 5450.00 40 \$18,000.00 10 \$15,000.01 720-20325 TEMPORARY SHORING IS I \$15,000.01 IS10,000.01 \$15,000.01 720-20325 TEMPORARY SHORING CYS \$3500.00 - IS20,256. 720-25105 CONCRETE, & FUDINATION SEAL CYS \$250.00 IZCO 263.5 \$57,970.0 723-5165 CONCRETE, & FUDINATION SEAL EACH \$250.00 IZCO 263.5 \$57,970.0 723-5628 REINFORCING BARS, FLOXY COATED IEBS \$14.00 \$470.2 \$532.660.0 - 263.623.2 \$17.99.44.1 703-6628 REINFORCING BARS, FLOXY COATED IEBS 51.40 \$140.00 767 \$30.860.0 756.1 \$73.8,95.00 766.1 \$73.8,95.00 766.1 \$73.8,95.00 766.5 \$30.680.0 767 \$30.680.0 767 \$30.680.0 767 \$30.680.0 767 \$30.680.0 767 \$30.680.0 767 \$30.680.0 767 \$30.680.0						-	-		\$486,000.00
720-04325 TEMPORARY SHORING 15 - 1 \$150,000.0 1 \$150,000.0 702-51005 CONCRETE, A, SUBSTRUCTURE CYS \$360.00 - - 889.6 \$320,256.0 702-51015 CONCRETE, B, PODTNOS SAL CYS \$360.00 - - 263.5 \$57,970.0 702-51035 CONCRETE, G, SUBSTRUCTURE MODIFIED CYS \$320.00 1.00 \$24,000.00 -	702-02925	WATERPROOFING MEMBRANE SYSTEM		SFT		22426	\$134,556.00	21786	\$130,716.00
702-5105 CONCRETE, A, SUBSTRUCTURE I 1252.6 51.127.340 702-5105 CONCRETE, B, FOOTNAS I 283.00 I 183.00 702-5105 CONCRETE, B, FOOTNAS EACH 522.00 I 283.00 702-51585 FILO CONCRETE, GUNDATION SEAL EACH 520.00 1200 524.000 I 7 702-32587 FILO CONCRETE, GUNDATION SEAL MODIFED CYS 5750.00 470.2 5352.550.00 I I 7 703-36622 REINFORCING BARS, POXY COATED LBS 51.1.0 94400 5112.550.00 1252.52 517.97.04.0 532.550.00 2525.502.00 I I 7 530.680.00 767.530.680.00									\$18,000.00
702-5103 CONCRETE, BLODTINGS - - 889.6 5220.20 702-51046 CONCRETE, FOUNDAN SEAL CYS 5220.00 - - 625.3 557.970.0 702-51865 CONCRETE, EL, SUBSTRUCTURE EACH 520.00 1200 524.000.0 - - 707.2352 702-528257 CONCRETE, GL, SUBSTRUCTURE ILBS 51.40 94040 5131.656.00 128522 517.99.44.1 703-6028 RENFORCING BARS, FPOXY COATED ILBS 51.60 85380 5128.07.00 100028 528.94.24 51.960.930 706-60488 REINFORCING CORETE, C. SUPERTRUCTURE ORNAMENTAL LFT \$40.00 767 \$30.680.00 767 \$30.680.00 767 \$30.680.00 767 \$30.680.00 716 \$124.576.0 916 \$124.576.0 916 \$124.576.0 916 \$124.576.0 916 \$124.576.0 916 \$124.576.0 916 \$124.576.0 916 \$124.576.0 916 \$124.576.0 916 \$124.576.0 \$165.00 \$16.00.00.00<						1	\$150,000.00		\$150,000.00
702-51045 CONCRETE, FOUNDATION SEAL CYS \$\$22.000 - - \$63.5 \$57.70. 702-51863 FILE DORLIED HOLE MOCNCRETE EACH \$20.00 470.2 \$352,650.00 - - 70.2 70.2 \$352,650.00 - - 70.2 \$352,650.00 1200 \$524,000.00 - - 70.2 \$352,650.00 1200 \$524,000.00 1200 \$524,000.00 1200.2 \$525,042.1 \$352,650.00 756.1 \$718,295.00 130.2 \$255,042.1 \$356,042.1 \$357,040.1 \$356,042.1 \$356,042.1 \$356,042.1 \$356,040.0 \$352,040.0 <						-	-		
T202-51853 FIELD DRILLED HOLE IN CONCRETE EACH \$23,000 \$24,000,00 - - - 702-28285 CONCRETE, C. SUBSTRUCTURE MODIFIED CYS \$75,000 470.2 \$353,255,000 - - - 703-06029 REINFORCING BARS, EPOXY COATED LBS \$14.0 \$94040 \$111,556,00 128532 \$128,070.00 190028 \$285,042.0 703-06029 REINFORCING BARS, EPOXY COATED LBS \$15.0 853800 \$128,070.00 120642 \$136,059.00 756.1 \$136,000.0 767 \$30,680.00 767 \$30,680.00 767 \$30,680.00 767 \$30,680.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00 11 \$50,000.00						-	-		
703-0602 EINFORCING BARS IBS \$1.40 94040 \$131,650.00 1285.22 \$179,944.3 703-06023 REINFORCING BARS, EPOXY COATED LBS \$150.00 \$128,070.00 1900.28 \$285,042.4 703-06023 REINFORCING BARS, EPOXY COATED LBS \$51.00 \$76.1 \$718,295.00 2064.2 \$1,360,300.00 767 \$30,680.0 700 \$124,576.0 916 \$124,576.0 916 \$124,576.0 916 \$124,576.0 916 \$124,576.0 916 \$124,570.0 <						1200	\$24,000.00		
703-6029 RENFORCING BARS, EPOXY COATED IBS \$1.50 \$8380 \$128,070.00 190028 \$285,042. 704-51002 CONCRETE, C, SUPERSTRUCTURE CYS \$595.00 756.1 \$718,295.00 766.1 \$718,295.00 766.1 \$718,295.00 767 \$30,660.00 767 \$30,660.00 767 \$30,660.00 767 \$30,660.00 767 \$30,660.00 767 \$30,660.00 767 \$30,660.00 767 \$30,660.00 767 \$30,660.00 767 \$30,660.00 760,72 \$50,000.00 65.3 \$58,77.00 65.3 \$58,77.00 65.3 \$58,77.00 65.3 \$58,77.00 65.3 \$58,77.00 65.3 \$58,70.00 13 \$60,000.00 1 \$60,000.00 1 \$60,000.00 1 \$60,000.00 1 \$60,000.00 1 \$60,000.00 1 \$60,000.00 1 \$60,000.00 1 \$60,000.00 1 \$50,000.00 1 \$50,000.00 1 \$50,000.00 1 \$50,000.00 1 \$50,000.00 1	702-92857	CONCRETE, C, SUBSTRUCTURE	, MODIFIED	CYS	\$750.00	470.2	\$352,650.00	-	-
704-51002 CONCRETE, C, SUPERSTRUCTURE CYS \$590.00 756.1 \$718.295.00 206.42.2 \$1,969.990 706-04683 RAILING SYS \$3136.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 916 \$124.576.00 \$65.3 \$58.770.00 \$65.3 \$58.770.00 \$65.3 \$58.770.00 \$65.3 \$58.770.00 \$65.00.00 \$1.800,000.00 1 \$60.000.00 \$1.800,000.00 1 \$60.000.00 \$1.800,000.00 1 \$50.000 \$1.800,000.00 1 \$50.000 \$1.800,000.00 1 \$50.000.00 \$1.800,000.00 1 \$50.000 \$1.800,000.00 1 \$50.000 \$1.800,000.00 1 \$50.000.00 \$1.800,000.00 1 \$50.000.00 \$1.800,000.00 1 \$50.000.00 \$1.800,000.00 1 \$50.000.00 \$1.800,000.00<									\$179,944.80
206-0483 RALING ORNAMENTAL LFT \$40.00 767 \$30,580.00 767 \$30,680.0 706-08436 REINFORCED CONCRETE C CYS \$5136.00 916 \$124,576.00 916 \$124,576.00 916 \$124,576.00 916 \$124,576.00 916 \$124,576.00 916 \$124,576.00 916 \$124,576.00 916 \$124,576.00 916 \$124,576.00 \$126,500.0 \$400.000.00 \$11,800,000.00 \$13,800,000 \$13,800,000 \$13,800,000 \$13,800,000 \$13,800,000 \$13,800,000 \$115,556.00 \$165 \$11 \$400,000.00 \$13,800,000									\$285,042.00
706-08496 REINFORCED CONCRETE MOMENT SLAB, 12 IN. SYS \$136.00 916 \$124,576.00 706-1020 RAILING, CONCRETE C CYS \$900.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 65.3 \$58,770.00 63.3 \$58,770.00 63.3 \$50,000.00 11 \$50,000.00 11.31 \$21,489.00 1131 \$21,489.00 1131 \$21,489.00 113 \$50,000.00 1 \$50,000.00 12.5 1 \$50,000.00 1 \$50,000.00 12.5 \$10,500.00 8 \$21,060.00 8 \$21,060.00 8 \$21,060.00 8 \$21,060.00 8 <			ORNAMENTAL		1				
706-51020 PAILING, CONCRETE C. CYS \$990.00 65.3 \$58,770.00 65.3 \$58,770.00 709-5121 SURFACE SEAL LS - 1 \$60,000.0 1 \$60,000.0 713-04331 TEMPORARY CAUSEWAY LS - 1 \$400,000.0 4000 \$1,800,000.00 10 \$400,000.0 713-04331 TEMPORARY CAUSEWAY LS - 1 \$400,000.0 11 \$400,000.0 715-09407 PIPE, END BENT DRAIN, 6 IN. LFT \$12,000.00 11 \$30,000.0 1 \$30,000.0 1 \$30,000.0 13 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1 \$30,000.0 1			, ORNAMENTAL		-				\$124,576.00
210.XXXX LIMESTONE SFT \$450.00 4000 \$1,800,000.00 713.04331 TEMPORARY CAUSEWAY I.S - 1 \$400,000.00 1 \$400,000.00 713.04331 TEMPORARY CAUSEWAY ILS - 1 \$400,000.00 1 \$400,000.00 713.04331 TEMPORARY CAUSEWAY ILS - 1 \$30,000.00 1 \$50,000.00 715.0507 PIPE, END BENT DRAIN, 6 IN. ILS - 1 \$30,000.00 1 \$30,000.00 715.91361 PIPE, END BENT DRAIN, 6 IN. ILFT \$50.00 36 \$2,016.00 36 \$2,060.00 36 \$2,000.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\$58,770.00</td>									\$58,770.00
713-0431 TEMPORARY CAUSEWAY IS - 1 \$400,000.00 1 \$400,000.00 715-05407 PIPE, END BENT DRAIN, 6 IN. ILFT \$19.00 1131 \$21,489.00 1131 \$21,489.00 1131 \$21,489.00 1131 \$21,489.00 1133 \$21,489.00 1131 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,489.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 1133 \$21,480.00 \$21,400.00 11433 \$21,480.00 \$21,480.00 \$21,480.00 \$21,480.00	709-51821	SURFACE SEAL		LS	-		\$60,000.00	1	\$60,000.00
715-05407 PIPE, END BENT DRAIN, 6 IN. LFT \$19.00 1131 \$21,489.00 1131 \$21,489.00 715-0938 PIPE, BRIDGE DECK DRAIN SYSTEM LS - 1 \$30,000.00 1 \$30,000.00 715-0938 PIPE, RUGE IDECK DRAIN SYSTEM LIFT \$55.00 36 \$2,016.00 36 \$2,016.00 36 \$2,016.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$21,600.00 8 \$30,24.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,004.00 1 \$35,000.00 1									\$1,800,000.00
715-09938 PIPE, BRIDGE DECK DRAIN SYSTEM LS 1 \$30,000.00 1 \$30,000.00 715-09386 PIPE PVC 6 IN LFT \$56,00 36 \$2,016.00 36 \$2,016.00 720-45145 INLET, J10 MODIFIED EACH \$2,700.00 8 \$21,600.00 8 \$21,600.00 801-04308 ROAD CLOSURE SIGN ASSEMBLY EACH \$187.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 1 \$30,004.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,0									\$400,000.00
715-91361 PIPE PVC 6 IN LFT \$56.00 36 \$2,016.00 36 \$2,016.00 720-45145 INLET, J10 MODIFIED EACH \$52,700.00 8 \$21,600.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 8 \$22,160.00 6 \$1,122.00 6 \$1,122.00 6 \$1,122.00 801.0627.00 801.0627.00 8 \$3,024.00 28 \$3,024.00 28 \$3,024.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 10.07.07.07.07.07.07.07.07.07.07.07.07.07		, ,	1						\$21,489.00 \$30,000.00
720-45145 INLET, J10 MODIFIED EACH \$2,700.00 8 \$21,600.00 8 \$21,600.00 801-04308 ROAD CLOSURE SIGN ASSEMBLY EACH \$187.00 6 \$1,122.00 6 \$1,222.00 6 \$1,222.00 28 \$3,024.00 801-06640 CONSTRUCTION SIGN, A EACH \$187.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 14 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 1 \$25,000.00 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>\$2,016.00</td></td<>			1						\$2,016.00
801-04308 ROAD CLOSURE SIGN ASSEMBLY EACH \$187.00 6 \$1,122.00 6 \$1,122.00 801-06625 DETOUR ROUTE MARKER ASSEMBLY EACH \$108.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 28 \$3,024.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,812.00 12 \$1,012.00 13 \$55,000.00 1 \$55,000.00 1 \$55,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.0									\$21,600.00
801-06640 CONSTRUCTION SIGN, A EACH \$151.00 12 \$1,812.00 12 \$1,812.00 801-06775 MAINTAINING TRAFFIC , ROADWAY LS - 1 \$35,000.00 1 \$35,000.00 801-06775 MAINTAINING TRAFFIC , WATERWAY LS - 1 \$25,000.00 1 \$35,000.0 801-07118 BARRICADE, III-A LFT \$11.00 96 \$1,056.00 96 \$1,050.00.00 1 \$10,000.0	801-04308	ROAD CLOSURE SIGN ASSEMBLY		EACH	\$187.00	6	\$1,122.00	6	\$1,122.00
801-06775 MAINTAINING TRAFFIC ROADWAY LS - 1 \$35,000.00 1 \$35,000.00 801-06775 MAINTAINING TRAFFIC ,WATERWAY LS - 1 \$25,000.00 1 \$25,000.00 801-07178 BARRICADE, III-A LFT \$11.00 96 \$1,056.00 96 \$1,056.00 801-07119 BARRICADE, III-B LFT \$12.00 48 \$576.00 48 \$576.00 48 \$576.00 88 \$26,400.00 8 \$26,400.00 8 \$26,400.00 8 \$26,400.00 8 \$26,400.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 <									\$3,024.00
801-06775 MAINTAINING TRAFFIC , WATERWAY LS - 1 \$25,000.00 1 \$25,000.00 801-077118 BARRICADE, III-A LFT \$11.00 96 \$1,056.00 96 \$1,056.00 801-07119 BARRICADE, III-B LFT \$12.00 48 \$576.00 48 \$576.00 801-1642 PORTABLE CHANGEABLE MESSAGE SIGN LFT \$12.00 48 \$576.00 8 \$26,400.00 8 \$26,400.00 8 \$26,400.00 8 \$26,400.00 1 \$10,000.00 10 \$26,264.00 20			DOADWAY		\$151.00				\$1,812.00
801-07118 BARRICADE, III-A LFT \$11.00 96 \$1,056.00 96 \$1,056.00 801-07119 BARRICADE, III-B LFT \$12.00 48 \$576.00 48 \$576.00 801-161642 PORTABLE CHANGEABLE MESSAGE SIGN EACH \$3,300.00 8 \$26,400.00 8 \$26,400.00 8 \$576.00 1 \$10,000.00 1					-				
801-07119 BARRICADE, III-B LFT \$12.00 48 \$576.00 48 \$576.00 801-11642 PORTABLE CHANGEABLE MESSAGE SIGN EACH \$3,300.00 8 \$26,400.00 8 \$26,400.00 8 \$26,400.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$10,000.00 1 \$6,984.00 807 \$6,984.00 807 \$6,984.00 873 \$6,984.00 873 \$6,984.00 807 \$6,984.00 807 \$6,984.00 807 \$6,984.00 807 \$6,984.00 873 \$6,984.00 \$15,000.00 1 \$15,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 1 \$51,000.00 10 \$52,200.00 10 \$52,200.00 10 \$52,200.00 <t< td=""><td></td><td></td><td>, WOLLNWAT</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			, WOLLNWAT						
801-11642 PORTABLE CHANGEABLE MESSAGE SIGN EACH \$3,300.00 8 \$26,400.00 8 \$26,400.00 802-04993 SIGN ,INTERPRETIVE LS \$10,000.00 10 \$2,200.00 10 \$2,200.00 10 \$2,200.00 100		,	1						\$576.00
805-06595 CONDUIT, PVC, 2 IN. LFT \$8.00 873 \$6,984.00 873 \$6,984.00 807-04744 LIGHTING , ORNAMENTAL LS - 1 \$15,000.00 1 \$15,000.00 808-10031 LINE, MULTI-COMPONENT, BROKEN, WHITE, 4 IN. LFT \$3.00 202 \$606.00 202 \$606.00 808-10033 LINE, MULTI-COMPONENT, SOLID, WHITE, 4 IN. LFT \$2.50 50 \$225.00 50 \$222.00 808-10034 LINE, MULTI-COMPONENT, SOLID, VELLOW, 4 IN. LFT \$1.75 1300 \$2,275.00 100 \$2,275.00 808-10031 TRANSVERSE MARKING, MULTI-COMPONENT, STOP LINE, WHITE, 24 IN. LFT \$4.00 450 \$1,800.00 450 \$1,800.00 808-10051 TRANSVERSE MARKING, MULTI-COMPONENT, CROSSWALK LINE, WHITE, 6 IN. LFT \$4.00 450 \$1,800.00 450 \$1,800.00 808-10077 PAVEMENT MARKINGS MULTI-COMPONENT LANE INDICATION ARROW EACH \$286.00 2 \$572.00 2 \$572.00 808-10232 GROOVING FOR PAVEME	801-11642	,			\$3,300.00	8	\$26,400.00	8	\$26,400.00
807-04744 LIGHTING , ORNAMENTAL LS - 1 \$15,000.00 1 \$15,000.00 808-10031 LINE, MULTI-COMPONENT, BROKEN, WHITE, 4 IN. LFT \$3.00 202 \$606.00 202 \$606.00 808-10031 LINE, MULTI-COMPONENT, SOLID, WHITE, 4 IN. LFT \$2.50 50 \$225.00 50 \$225.00 808-10034 LINE, MULTI-COMPONENT, SOLID, WHITE, 4 IN. LFT \$2.50 50 \$227.00 \$202 \$606.00 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$2,275.00 \$300 \$52,200.00 \$110 \$52,200.00 \$110 \$52,200.00 \$1,800.00			, INTERPRETIVE						\$10,000.00
808-10031 LINE, MULTI-COMPONENT, BROKEN, WHITE, 4 IN. LFT \$3.00 202 \$606.00 202 \$606.00 808-10033 LINE, MULTI-COMPONENT, SOLID, WHITE, 4 IN. LFT \$2.50 50 \$125.00 50 \$125.00 808-10034 LINE, MULTI-COMPONENT, SOLID, WHITE, 4 IN. LFT \$2.50 50 \$125.00 50 \$125.00 808-10034 LINE, MULTI-COMPONENT, SOLID, YELLOW, 4 IN. LFT \$1.75 1300 \$2,275.00 1300 \$2,275.00 808-10035 TRANSVERSE MARKING, MULTI-COMPONENT, STOP LINE, WHITE, 24 IN. LFT \$2.00.0 110 \$2,200.00 808-10037 PAVEMENT MARKING, MULTI-COMPONENT, CROSSWALK LINE, WHITE, 6 IN. LFT \$4.00 450 \$1,800.00 450 \$1,800.00 808-10037 PAVEMENT MESSAGE MARKINGS MULTI-COMPONENT LANE INDICATION ARROW EACH \$286.00 2 \$572.00 2 \$572.00 808-12032 GROOVING FOR PAVEMENT MARKINGS LFT \$1.25 2112 \$2,640.00 2112 \$2,640.00 Contingency (20%) \$1,434,651.90 \$			ODNALASI						
808-10033 LINE, MULTI-COMPONENT, SOLID, WHITE, 4 IN. LFT \$2.50 50 \$125.00 50 \$125.00 808-10034 LINE, MULTI-COMPONENT, SOLID, VELLOW, 4 IN. LFT \$1.75 1300 \$2,275.00 1300 \$2,275.00 808-10031 TRANSVERSE MARKING, MULTI-COMPONENT, SOLID, VELLOW, 4 IN. LFT \$1.75 1300 \$2,275.00 110 \$2,200.00 808-10051 TRANSVERSE MARKING, MULTI-COMPONENT, SOLID, VELLOW, 4 IN. LFT \$4.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 450 \$1,800.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00 2 \$572.00			, UKNAMENTAL						
808-10034 LIFL \$1.75 1300 \$2,275.00 1300 \$2,275.00 808-10034 LIFL \$1.75 1300 \$2,275.00 1300 \$2,275.00 808-10051 TRANSVERSE MARKING, MULTI-COMPONENT, STOP LINE, WHITE, 24 IN. LFT \$20.00 110 \$2,200.00 808-10056 TRANSVERSE MARKING, MULTI-COMPONENT, STOP LINE, WHITE, 6 IN. LFT \$4.00 450 \$1,800.00 808-10077 PAVEMENT MESSAGE MARKINGS MULTI-COMPONENT LANE INDICATION ARROW EACH \$286.00 2 \$572.00 2 \$572.00 2 \$572.00 808-10272 GROOVING FOR PAVEMENT MARKINGS LFT \$1.25 2112 \$2,640.00 2112 \$2,640.00 808-102732 GROOVING FOR PAVEMENT MARKINGS LFT \$1.25 2112 \$2,640.00 2112 \$2,033,555									
808-10051 TRANSVERSE MARKING, MULTI-COMPONENT, STOP LINE, WHITE, 24 IN. LFT \$20.00 110 \$2,200.00 808-10056 TRANSVERSE MARKING, MULTI-COMPONENT, CROSSWALK LINE, WHITE, 6 IN. LFT \$4.00 450 \$1,800.00 808-10077 PAVEMENT MESSAGE MARKINGS MULTI-COMPONENT LANE INDICATION ARROW EACH \$286.00 2 \$572.00 2 \$572.00 808-12032 GROOVING FOR PAVEMENT MARKINGS LFT \$1.25 2112 \$2,640.00 2112 \$2,640.00 Contingency (20%) \$1,434,651.90 \$1,434,651.90 \$2,033,555			1						\$2,275.00
808-10056 TRANSVERSE MARKING, MULTI-COMPONENT, CROSSWALK LINE, WHITE, 6 IN. LFT \$4.00 450 \$1,800.00 450 \$1,800.00 808-10077 PAVEMENT MESSAGE MARKINGS MULTI-COMPONENT LANE INDICATION ARROW EACH \$286.00 2 \$572.00 2 \$572.00 808-12032 GROOVING FOR PAVEMENT MARKINGS LFT \$1.25 2112 \$2,640.00 2112 \$2,640.00 Contingency (20%) Standard Standard Standard \$1,434,651.90 \$2,033,555									\$2,200.00
808-12032 GROOVING FOR PAVEMENT MARKINGS LFT \$1.25 2112 \$2,640.00 2112 \$2,640.00 Contingency (20%) \$1,434,651.90 \$1,434,651.90 \$2,033,555	808-10056	TRANSVERSE MARKING, MULTI-COMPONENT, CROSSWALK LINE, WHITE, 6 IN.						450	\$1,800.00
Contingency (20%) \$1,434,651.90 \$2,033,555									\$572.00
	808-12032	GROOVING FOR PAVEMENT MARKINGS		LFT	\$1.25	2112		2112	\$2,640.00
Total (Rounded) 8.608.000 12.201.40	Contingency	(20%)					\$1,434,651.90		\$2,033,555.26
-,, 10,001,10	Total (Round	ded)					8,608,000		12,201,400

oject Information General Info: Bridge Length: Bridge Out-to-Out Width: Bridge Width Btw Railing:	$L_s := 323.25 \ ft$ $W_s := 72.08 \ ft$ $W_{btw.rail} := 68 \ ft$	
Bridge Out-to-Out Width:	$W_s := 72.08 \ ft$	
Bridge Width Btw Railing:	$W_{btw.rail} \coloneqq 68 \ ft$	
		(Per Survey and Field Measurements)
Bridge Clear Rdwy Width:	$W_{clr} := 55 \ ft$	
Barrier Curb Width:	$W_{bar,curb} := 1.17 \ ft$	
Bridge Skew:	<i>Skew</i> := 0 <i>deg</i>	
Length of Appr. Full		
Depth Replacement:	$L_{appr:full.depth.N} := 20 \ ft$	(Approximate from end of bridge to straight line continuation of curbs on south side of North Shore Drive)
	$L_{appr:full.depth.S} := 50 \ ft$	(Approximate to the end of barrier curb taper into approach curb)
Construction Info:		
Construction Duration:	$T_{construction} \coloneqq 24$ Months	(Estimated)

05-06845 Construction Engineering				
Alternatives B1a & B1b:				
Estimated at 2% of Total Contract Cost	per IDM 20-2.03.			
$Total_{105.06845} := 1$ LSUM			$Total_{105.06845} = 1$	LSUM
10-01001 Mobilization and Demobilization	lon			
Alternatives B1a & B1b:				
Estimated at 5% of Total Contract Cost	per IDM 20-2 03			
$Total_{110,01001} := 1 LSUM$	per 1211 20 2100.		$Total_{110,01001} = 1$	LSUM
201-52370 Clearing Right of Way				
Alternatives B1a & B1b:				
Estimated at \$75,000 based on project	site.			
$Total_{201.52370} := 1$ LSUM			$Total_{201.52370} = 1$	LSUM
202-02240 Pavement Removal				
Alternatives B1a & B1b:				
$Total_{202.02240} \coloneqq \operatorname{ceil}\left(\left(W_{clr} \cdot L_s\right) \mathbf{yd}^{-2}\right) \mathbf{yd}^2$			$Total_{202.02240} = 19^{\circ}$	76 yd^2
02-51328 Present Structure, Remove P	ortions			
Alternatives B1a:				
<i>Total</i> _{202.51328} := 1 LSUM			$Total_{202.51328} = 1$	LSUM
202-51330 Present Structure, Remove Alternatives B1b:				
$Total_{202.51330} := 1 LSUM$			$Total_{202.51328} = 1$	LSUM
			10101202.51328 - 1	LOOM
202-52710 Sidewalk Concrete, Remove				
Alternatives B1a & B1b:				
Total Combined Existing Sidewalks Wid	Ith: $W_{existing.sidewalks} := W_{btw.s}$	$_{rail} - W_{clr} - W_{bar.curb} \cdot 2 = 1$	10.66 <i>ft</i>	
Additional Area at Ends of Bridge:	$A_{N.sidewalk} := 300 \ ft^2$	$A_{S.sidewalk} \coloneqq 1000 \ ft^2$		
$Total_{202.52710} \coloneqq \operatorname{ceil}\left(\left(W_{existing.sidewalks} \cdot L_s + A\right)\right)$	$\left(N_{N.sidewalk} + A_{S.sidewalk} \right) yd^{-2} $	yd ²	$Total_{202.52710} = 523$	$8 yd^2$
03-02000 Excavation, Common				
Alternatives B1a & B1b:				
Approx. Elevation Area of Arch Backfill:	$A_{arch.backfill} \coloneqq 2900 \ ft^2$			
Approx. Width of Spandrel Walls:	$W_{spandrel.walls} := 2 ft$			
Approach Pavement Removal Depth:	$D_{appr,pvmt} := 12$ in	(Approxir	nate)	
	Pappr.pvmt - 12 III			
Additional Area of Pavement Removal in North Intersection:	$A_{add.intersection} \coloneqq 250 \ ft^2$			
Approach Pavement Removal Area:	$A_{appr.pvmt} := W_{clr} \cdot \left(L_{appr.full.a} \right)$	$_{depth.N} + L_{appr.full.depth.S} + A$	add.intersection = 455.6	yd ²
		(-3)	T 1 74	$5 ext{ } e$
$Total_{203.02000} := \operatorname{ceil} \left(\left(A_{arch.backfill} \cdot \left(W_s - W_{sp} \right) \right) \right)$	$_{andrel.walls} \cdot 2) + A_{appr.pvmt} \cdot D_{a}$	ppr.pvmt) ya) ya	$Total_{203.02000} = 74$	55 ya

05-12108 Stormwater Manage Alternatives B1a & B1b:				
Estimated at \$10,000 per cos	t on similar proiect.			
$Total_{205, 12108} := 10000$ DOL			$Total_{205,12108} = 100$	00 DC
205.12108			203.12100	
05-12616 Stormwater Manage	ment Implementation			
Alternatives B1a & B1b:				
- Project is within St. Joseph	ce the following two Secondary Sole Source Aquifer b be two full construction seaso		· INDOT Design Me	emo 20-0
Stormwater Management Ins	pections: $Cost_{Inspect} := 425 \cdot (T_{col})$	$onstruction \cdot 4) = 40800 \text{ DOL}$		
SWQM Progress Meetings:	$Cost_{Meeting} := 425 \cdot (T_{c})$	$_{construction} \cdot 2) = 20400 \text{ DOL}$		
SWQM Level:	$Cost_{Level} \coloneqq 1500$ DC	DL		
Total Cost:	$Total_{SWQM.Impl.Cost} := C$	$Cost_{Inspect} + Cost_{Meeting} + Cost_{Le}$	$_{vel} = 62700 \text{ DOL}$	
<i>Total</i> _{205.12616} := 1 LSUM			$Total_{205.12616} = 1$	LSUM
05-12618 SWQCP Preparation	1			
Alternatives B1a & B1b:				
Estimated at \$20,000 per INE	OT Design Memo 20-05.			
$Total_{205.12618} := 1$ LSUM			$Total_{205.12618} = 1$	LSUM
06-51220 Excavation, Wet				
Alternative B1b:				
	on for the casting of the new be	nt footings		
		(Approximate)		
Width of Bent Footings:	$W_{footing.bent} \coloneqq 20 \ ft$	(/ (pp) / //////////////////////////////		
Height of Bent Footings:	$H_{footing.bent} := 3 ft$	(Approximate)		
Length of Bent Footings:	$L_{footing.bent} := W_s + 14 ft \cdot 2 = 100$	ft (Approximate)		
Dist. From Bott. Bent				
Footings to Existing Ground:	$D_{footing.bent.depth} \coloneqq 12 \ ft$	(Approximate)		
Depth of Foundation Seal:	$D_{foundation.seal} \coloneqq 3 ft$	(Estimated)		
$Total_{206.51220} := ceil (((((W_{footing})))))$	$bent + 3 ft \cdot (L_{footing.bent} + 3 ft) \downarrow$ $a_{g.bent} \cdot L_{footing.bent}) \downarrow$ $b_{footing.bent} \cdot D_{foundation.seal} \cdot 2$	• $(D_{footing.bent.depth} + D_{foundation.so})$	$(eal) \cdot 2 \downarrow) \cdot yd^{-3} yd^{3}$	
$ - (W_{footing}) $	$_{z,bent} \bullet L_{footing,bent}$			
$((+W_{footing.b}))$	$_{ent} \bullet L_{footing, bent} \bullet D_{foundation, seal} \bullet 2$))	
			$Total_{206.51220} = 856$	vd^3
			200.51220 - 550	<i></i>
06-51235 Cofferdam				
06-51235 Cofferdam Alternatives B1a & B1b:				
Alternatives B1a & B1b:	. B1a and \$200,000 for Alt. B1b	o per cost on similar project.		
Alternatives B1a & B1b:	. B1a and \$200,000 for Alt. B1b	o per cost on similar project.	$Total_{206.51235} = 1$	LSUM
<i>Alternatives B1a & B1b:</i> Estimated at \$200,000 for Alt	. B1a and \$200,000 for Alt. B1t	o per cost on similar project.		LSUM
<i>Alternatives B1a & B1b:</i> Estimated at \$200,000 for Alt	. B1a and \$200,000 for Alt. B1t	o per cost on similar project.		LSUM

Alternatives B1a & B1b:	
Width of PCCP: $W_{PCCP} := W_{btw:rail} = 68 \ ft$	
Length of PCCP: $L_{PCCP} := L_s + L_{appr,full,depth,N} + L_{appr,full,depth,S} = 393 ft$	
$Total_{207.09935} \coloneqq \operatorname{ceil}\left(\left(W_{PCCP} \cdot L_{PCCP} + A_{add.intersection}\right) \mathbf{yd}^{-2}\right) \mathbf{yd}^{2}$	$Total_{207.09935} = 2999 \ yd^2$
211-09266 Structure Backfill, Type 3	
Alternatives B1a & B1b:	
Volume of Pavement, Subbase, and Subgrade: $V_{pvmt} := (12 \text{ in} + 9 \text{ in} + 12 \text{ in}) \cdot (W_{cln})$	$(+10 \ in \cdot 2) \cdot L_s = 1865.7 \ yd^3$
Volume of Sidewalk, Subbase, and Subgrade: $V_{sidewalk} := (4 \ in + 9 \ in + 12 \ in) \downarrow \cdot (W_{btw.rail} - W_{clr} - 10 \ in \cdot 10 \ in$	$= 282.7 \ yd^3$
$Total_{211.09266} \coloneqq \operatorname{ceil} \left(\left(Total_{203.02000} - A_{appr.pvmt} \cdot D_{appr.pvmt} - V_{pvmt} - V_{sidewalk} \right) \mathbf{yd}^{-3} \right) \mathbf{yd}^{3}$	$Total_{211.09266} = 5165 \ yd^3$
302-06464 Subbase for PCCP	
Alternatives B1a & B1b:	
Depth of Subbase: $D_{subbase} := 9$ in (Estimated)	
$Total_{302.06464} := ceil \left(Total_{207.09935} \cdot D_{subbase} \cdot yd^{-3} \right) yd^{3}$	$Total_{302.06464} = 750 \ yd^3$
306-08043 Milling, Transition	
Alternatives B1a & B1b:	
Areas of Milling: $A_{milling.N} := 5000 ft^2$ (Approximate)	
$A_{milling.S} \coloneqq W_{clr} \cdot 30 \ ft = 1650 \ ft^2$	
$Total_{306.08043} := ceil ((A_{milling.N} + A_{milling.S}) yd^{-2}) yd^{2}$	$Total_{306.08043} = 739 \ yd^2$
401-07328 QC/QA-HMA, 3, 70, Surface, 9.5 mm	
Alternatives B1a & B1b:	
HMA Unit Weight: $\gamma_{HMA} := 0.055 \frac{ton}{yd^2}$ (per 1"; IDM Fig	g. 17-4A)
HMA Depth: $D_{HMA} := 1.5$ in	
$Total_{401.07328} \coloneqq \operatorname{ceil}\left(Total_{306.08043} \cdot \gamma_{HMA} \cdot \left(\frac{D_{HMA}}{1 \text{ in}}\right) \cdot ton^{-1}\right) ton$	$Total_{401.07328} = 61 ton$
401-10258 Joint Ashesive, Surface	
Alternatives B1a & B1b:	
Number of Joints: $N_{HMA,joints} := 5$	
Joint Lengths: $L_{HMA, joints.N} \coloneqq 60 \ ft$ $L_{HMA, joints.S} \coloneqq 30 \ ft$	
$Total_{401,10258} \coloneqq \operatorname{ceil} \left(N_{HMA,joints} \cdot \left(L_{HMA,joints,N} + L_{HMA,joints,S} \right) \cdot ft^{-1} \right) ft$	$Total_{401.10258} = 450 \ ft$
401-11785 Liquid Asphalt Sealant Alternatives B1a & B1b:	

Itornativos R1a & D1h	Coat	
Alternatives B1a & B1b: Total _{406,05521} := Total _{306,08043}		$Total_{406,05521} = 739 \ yd^2$
100000406.03321 100000308.08043		
<u>1-06323 QC/QA-PCCP, 12 I</u>	<u>N</u>	
Alternatives B1a & B1b:		
$Total_{501.06323} := ceil ((Total_{207.0}))$	$W_{9935} - \left(W_{btw,rail} - W_{clr} - 10 \ \mathbf{in} \cdot 2 + 11 \ \mathbf{ft} \cdot 2\right) \cdot L_s \cdot \mathbf{yd}^{-2} \mathbf{yd}^2$	$Total_{501.06323} = 1802 \ yd^2$
3-05240 D-1 Contraction J	oint	
Alternatives B1a & B1b:		
Joint Spacing: Sjoints :=	= 15 <i>ft</i> (Conservatively used based on 18 ft max. sp	acing per Std. Spec. 503.03(a)
Number of Joints: N	$= \operatorname{coil}(L_{PCCP}) = 27$	
Number of Joints: N _{joints} ::	$= \operatorname{cen}\left(\frac{1}{S_{joints}}\right) = 27$	
$Total_{503.05240} \coloneqq \operatorname{ceil} \left(W_{clr} \bullet N_{join} \right)$	$ts \cdot ft^{-1}$ ft	$Total_{503.05240} = 1485 \ ft$
4-06070 Sidewalk, Concret	te	
Alternatives B1a & B1b:		
Proposed Barrier/Curb Width on Bridge:	$W_{prop.bar} := 10$ in	
Total Combined Proposed Sidewalks Width:	$W_{prop.sidewalks} := W_{btw.rail} - W_{clr} - W_{prop.bar} \cdot 2 = 11.33 \ ft$	
Curb Ramps Area:	$A_{curb,ramps,sw,se} := 120 ft^2$ (At southwest and southeast corner	rs of intersection north of bridge)
004.00070 ((prop.side	$_{walks} \cdot L_s + A_{N.sidewalk} + A_{S.sidewalk} - A_{curb.ramps.sw.se} yd^{-2} yd^2$	$Total_{604.06070} = 539 \ yd^2$
4-08086 Curb Ramp, Conc		
4-08086 Curb Ramp. Conc Alternatives B1a & B1b: Curb Ramps Area:	rete	
4-08086 Curb Ramp. Conc Alternatives B1a & B1b: Curb Ramps Area: $Total_{604.08086} \coloneqq ceil ((A_{curb.ramp})))$	rete $A_{curb.ramps.nw.ne} := 400 \ ft^2 \qquad (At northwest and northeast corners)$ $s.sw.se + A_{curb.ramps.nw.ne} \cdot yd^{-2} yd^2$	s of intersection north of bridge)
4-08086 Curb Ramp. Conc Alternatives B1a & B1b: Curb Ramps Area: <i>Total_{604.08086}</i> ≔ ceil ((A _{curb.ramp} 4-12083 Detectable Warni r	rete $A_{curb.ramps.nw.ne} := 400 \ ft^2 \qquad (At northwest and northeast corners)$ $s.sw.se + A_{curb.ramps.nw.ne} \cdot yd^{-2} yd^2$	s of intersection north of bridge)
4-08086 Curb Ramp, Conc Alternatives B1a & B1b: Curb Ramps Area: <i>Total</i> _{604.08086} ≔ ceil ((A _{curb.ramp} 4-12083 Detectable Warnir Alternatives B1a & B1b:	rete $A_{curb.ramps.nw.ne} := 400 \ ft^2 \qquad (At northwest and northeast corners)$ $s.sw.se + A_{curb.ramps.nw.ne} \cdot yd^{-2} yd^2$	s of intersection north of bridge)
4-08086 Curb Ramp, Conc Alternatives B1a & B1b: Curb Ramps Area: <i>Total</i> _{604.08086} ≔ ceil ((A _{curb.ramp} 4-12083 Detectable Warnir Alternatives B1a & B1b:	rete $A_{curb.ramps.nw.ne} := 400 \ ft^2$ (At northwest and northeast corners $s.sw.se + A_{curb.ramps.nw.ne}) \cdot yd^{-2}$) yd^2 ng Surfaces ng Detectable Warning Surfaces.	s of intersection north of bridge) $Total_{604.08086} = 58 yd^2$
4-08086 Curb Ramp, Conc Alternatives B1a & B1b: Curb Ramps Area: $Total_{604.08086} := ceil ((A_{curb.ramp}$ 4-12083 Detectable Warnir Alternatives B1a & B1b: Areas Estimated per Existin	rete $A_{curb.ramps.nw.ne} := 400 ft^2$ (At northwest and northeast corners $s.sw.se + A_{curb.ramps.nw.ne}) \cdot yd^{-2}$) yd^2 ng Surfaces ng Detectable Warning Surfaces. of Intersection: $A_{SW.warning.surface} := 8 ft \cdot 2 ft = 16 ft^2$ (At northwest and northeast corners)	s of intersection north of bridge)
4-08086 Curb Ramp. Conc Alternatives B1a & B1b: Curb Ramps Area: <i>Total</i> _{604.08086} := ceil ((A _{curb.ramp} 4-12083 Detectable Warnir Alternatives B1a & B1b: Areas Estimated per Existin Area at Southwest Corner o	rete $A_{curb.ramps.nw.ne} := 400 ft^2$ (At northwest and northeast corners $s.sw.se + A_{curb.ramps.nw.ne}) \cdot yd^{-2}$) yd^2 ng Surfaces ng Detectable Warning Surfaces. of Intersection: $A_{SW.warning.surface} := 8 ft \cdot 2 ft = 16 ft^2$ (of Intersection: $A_{SE.warning.surface} := 4 ft \cdot 2 ft = 8 ft^2$ (of Intersection:	s of intersection north of bridge) $Total_{604.08086} = 58 yd^2$ (Estimated) (Estimated)
4-08086 Curb Ramp. Conc Alternatives B1a & B1b: Curb Ramps Area: <i>Total</i> _{604.08086} ≔ ceil ((A _{curb.ramp} 4-12083 Detectable Warnir Alternatives B1a & B1b: Areas Estimated per Existir Area at Southwest Corner of Area at Southeast Corner of	rete $A_{curb.ramps.nw.ne} := 400 \ ft^2$ (At northwest and northeast corners $s.sw.se + A_{curb.ramps.nw.ne}) \cdot yd^{-2}$) yd^2 ng Surfaces Ing Detectable Warning Surfaces. of Intersection: $A_{SW.warning.surface} := 8 \ ft \cdot 2 \ ft = 16 \ ft^2$ (of Intersection: $A_{SE.warning.surface} := 4 \ ft \cdot 2 \ ft = 8 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft \cdot 2 \ ft \cdot 2 \ ft = 24 \$	s of intersection north of bridge) $Total_{604.08086} = 58 yd^2$ (Estimated) (Estimated) (Estimated)
4-08086 Curb Ramp. Conc Alternatives B1a & B1b: Curb Ramps Area: Total _{604.08086} := ceil ((A _{curb.ramp} 4-12083 Detectable Warnin Alternatives B1a & B1b: Areas Estimated per Existin Area at Southwest Corner of Area at Southeast Corner of Area at Northwest Corner of Area at Northwest Corner of	rete $A_{curb,ramps,nw,ne} := 400 ft^2$ (At northwest and northeast corners $s.sw.se + A_{curb,ramps,nw,ne}) \cdot yd^{-2}$) yd^2 ng Surfaces Ing Detectable Warning Surfaces. Inf Intersection: $A_{SW,warning,surface} := 8 ft \cdot 2 ft = 16 ft^2$ (of f Intersection: $A_{SE,warning,surface} := 4 ft \cdot 2 ft = 8 ft^2$ (of f Intersection: $A_{NW,warning,surface} := 12 ft \cdot 2 ft = 24 ft^2$ (of f Intersection: $A_{NW,warning,surface} := 12 ft \cdot 2 ft = 24 ft^2$ (of f Intersection: $A_{NE,warning,surface} := 12 ft \cdot 2 ft = 24 ft^2$ (of	s of intersection north of bridge) $Total_{604.08086} = 58 \ yd^2$ (Estimated) (Estimated) (Estimated) (Estimated)
4-08086 Curb Ramp. Conc Alternatives B1a & B1b: Curb Ramps Area: Total _{604.08086} := ceil ((A _{curb.ramp} 4-12083 Detectable Warnin Alternatives B1a & B1b: Areas Estimated per Existin Area at Southwest Corner of Area at Southeast Corner of Area at Northwest Corner of Area at Northwest Corner of	rete $A_{curb.ramps.nw.ne} := 400 ft^2$ (At northwest and northeast corners $s.sw.se + A_{curb.ramps.nw.ne} \cdot yd^{-2}$) yd^2 ng Surfaces Ing Detectable Warning Surfaces. Inf Intersection: $A_{SW.warning.surface} := 8 ft \cdot 2 ft = 16 ft^2$ (of f Intersection: $A_{SE.warning.surface} := 4 ft \cdot 2 ft = 8 ft^2$ (of f Intersection: $A_{NW.warning.surface} := 12 ft \cdot 2 ft = 24 ft^2$ (of f Intersection: $A_{NW.warning.surface} := 12 ft \cdot 2 ft = 24 ft^2$ (of f Intersection: $A_{NE.warning.surface} := 12 ft \cdot 2 ft = 24 ft^2$ (of	s of intersection north of bridge) $Total_{604.08086} = 58 \ yd^2$ (Estimated) (Estimated) (Estimated)
4-08086 Curb Ramp. Conc Alternatives B1a & B1b: Curb Ramps Area: Total _{604.08086} := ceil ((A _{curb.ramp} 4-12083 Detectable Warnin Alternatives B1a & B1b: Areas Estimated per Existin Area at Southwest Corner of Area at Southeast Corner of Area at Northwest Corner of Area at Northwest Corner of	rete $A_{curb.ramps.nw.ne} := 400 \ ft^2$ (At northwest and northeast corners $s.sw.se + A_{curb.ramps.nw.ne}) \cdot yd^{-2}$) yd^2 ng Surfaces Ing Detectable Warning Surfaces. of Intersection: $A_{SW.warning.surface} := 8 \ ft \cdot 2 \ ft = 16 \ ft^2$ (of Intersection: $A_{SE.warning.surface} := 4 \ ft \cdot 2 \ ft = 8 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft^2$ (of Intersection: $A_{NW.warning.surface} := 12 \ ft \cdot 2 \ ft = 24 \ ft \cdot 2 \ ft \cdot 2 \ ft = 24 \$	s of intersection north of bridge) $Total_{604.08086} = 58 \ yd^2$ (Estimated) (Estimated) (Estimated) (Estimated)

05-02278 Curb, Remove	
Alternatives B1a & B1b:	
Note: This includes the removal of the existing barrier curb.	
Additional Lengths at Ends of Bridge: $L_{N.curb} := 40 \ ft$ $L_{S.curb} := 100 \ ft$	
$Total_{605.02278} \coloneqq \operatorname{ceil}\left(\left(L_s \cdot 2 + L_{N.curb} + L_{S.curb}\right) ft^{-1}\right) ft$	$Total_{605.02278} = 787 \ ft$
05-06120 Curb, Concrete	
Alternatives B1a & B1b:	
$Total_{605.06120} \coloneqq \operatorname{ceil} \left(L_{N.curb} \cdot ft^{-1} \right) ft$	Total _{605.06120} = 40 ft
16-05688 Riprap, Class 1	
Alternatives B1a:	
Note: For this alternative the piers and abutments require so the 2006 rehabilitation plans Class 1 riprap is proposed. The	
203-3B still based on the pier width but placed around the co	offerdam.

Depth of Riprap:	$D_{riprap.pier} := 3 ft$	(IDM Fig. 203-3B)
	$D_{riprap.abut} := 2 ft$	(IDM Fig. 203-3B)
Unit Weight of Riprap:	$\gamma_{riprap} \coloneqq 1.5 \ \frac{ton}{yd^3}$	(IDM Fig. 17-4A)
Pier Width:	$W_{pier} := 11 \ ft$	
Water Depth:	$D_{water} \coloneqq 5 ft$	(Approximate)
Controlling Riprap Width:	$W_{riprap.pier} \coloneqq \max\left(6 \ ft, 2 \cdot W_{pier}\right) = 22 \ ft$	(IDM Fig. 203-3B)
	$W_{riprap.abut} := \max\left(10 \ ft, 2 \cdot D_{water}\right) = 10 \ ft$	(IDM Fig. 203-3B)
Riprap Areas: (Conservative Approx.)	$A_{riprap.areas.piers} \coloneqq 14200 \ ft^2$	
	$\begin{aligned} A_{riprap.areas.abuts} &\coloneqq \left(W_{riprap.abut} + W_{footing.bent} \right) \bullet \left(W_{r} \\ &- \left(W_{footing.bent} \bullet L_{footing.bent} \right) \end{aligned}$	$iprap.abut \cdot 2 + L_{footing.bent} $ $\downarrow = 1601 \ ft^2$
Riprap Perimeter: (Conservative Approx.)	$P_{riprap.perimeters.piers} \coloneqq 1300 \ ft$	
	$P_{riprap.perimeters.abuts} \coloneqq \left(W_{riprap.abut} \cdot 6 + L_{footing.bent} \cdot 6 \right)$	$\bullet 2 + W_{footing.bent} \bullet 4 = 340 \ ft$
$Total_{616.05688} \coloneqq \operatorname{ceil}\left(\left(D_{riprap.pier}\right)\right)$	$r \cdot A_{riprap.areas.piers} + D_{riprap.abut} \cdot A_{riprap.areas.abuts} ight) \cdot \gamma_{riprap.areas}$	$_{p} \cdot ton^{-1}$) ton
		Total _{616.05688} = 2545 ton

616-12251 Geotextile For Riprap, Type 3

Alternatives B1a:		
$Total_{616.12251} \coloneqq \operatorname{ceil}($	$(A_{riprap.areas.piers} + P_{riprap.perimeters.piers} \cdot D_{riprap.pier} \downarrow) \cdot yd^{-2} yd^{2}$	$Total_{616.12251} = 2265 \ yd^2$
	$(+A_{riprap,areas,abuts} + P_{riprap,perimeters,abuts} \cdot D_{riprap,abut})$	

621-01004 Mobilization and Demobilization for Seeding

Nternatives B1a & B1b:	
$Total_{621.01004} := 1$ EACH	$Total_{621.01004} = 1$ EACH

Alternatives B1a & B1b:		
Area: $A_{seeding} = 200 \ ft^2 \cdot 4 = 800 \ ft^2$ (Estimated for all bridge quadrants)		
$Total_{621.06560} \coloneqq \operatorname{ceil} \left(A_{seeding} \cdot yd^{-2} \right) yd^{2}$	$Total_{621.06560} = 89 \ yd^2$	
701-XXXXX Micropile, 7 IN		
Alternatives B1a:		
Number of Micropiles: $N_{micropiles} := 20$ (Per Pier)		
Length of Micropiles: $L_{micropiles} := 50 \ ft$ (Estimated)		
$Total_{701.XXXXX} := \operatorname{ceil} \left(N_{micropiles} \cdot L_{micropiles} \cdot 2 \cdot ft^{-1} \right) ft$	$Total_{701.XXXXX} = 2000$	ft
701-XXXXX Micropile, Testing		
Alternatives B1a:		
Estimated at \$60,000 .		
$Total_{701.XXXXX.Testing} := 1$ LSUM	Total _{701.XXXXX.Testing} =	I LSU
701-06011 Dynamic Pile Load Test		
Alternatives B1b:		
Note: It is estimated that one pile load test will be completed per bent receiving new	piling.	
Number of Pile Load Tests: N _{pile.load.test.B1b} := 4 EACH		
$Total_{701.06011.B1b} := N_{pile.load.test.B1b}$	$Total_{701.06011.B1b} = 4$	EACH
701-09557 Test Pile, Dynamic, Production		
Alternatives B1b:		
Note: It is estimated that one test pile will be provided per bent receiving new piling.		
Piling Length: $L_{piles} := 50 \ ft$		
$Total_{701.09557.B1b} := \operatorname{ceil} \left(N_{pile.load.test.B1b} \cdot \left(L_{piles} + 10 \ ft \right) \ ft^{-1} \right) \ ft$	$Total_{701.09557.B1b} = 240$	ft
701-09559 Test Pile, Dynamic, Restrike		
Alternatives B1b:		
Note: It is estimated that one test pile will be provided per bent receiving new piling.		
$Total_{701.09559.B1b} := N_{pile.load.test.B1b}$	$Total_{701.09559.B1b} = 4$	EACH
701-09683 Pile Shoe, HP 12x74		
Alternative B1b:		
Alternative B1b:	Estimated per bent)	
Alternative B1b:	Estimated per bent) $Total_{701.09683} = 162$	EACH
Alternative B1b:Number of Piles: $N_{piles.abut} := 36$ EACH $N_{piles.pier} := 45$ EACH(I $Total_{701.09683} := (N_{piles.abut} + N_{piles.pier}) \cdot 2$		EACH
Alternative B1b: Number of Piles: $N_{piles.abut} := 36$ EACH $N_{piles.pier} := 45$ EACH (I $Total_{701.09683} := (N_{piles.abut} + N_{piles.pier}) \cdot 2$ 2 701-95780 Pile. Steel H, HP 12x74		EACH
Alternative B1b: Number of Piles: $N_{piles.abut} := 36$ EACH $N_{piles.pier} := 45$ EACH (I $Total_{701.09683} := (N_{piles.abut} + N_{piles.pier}) \cdot 2$ 701-95780 Pile. Steel H. HP 12x74 Alternative B1b:	$Total_{701.09683} = 162$	
Alternative B1b: Number of Piles: $N_{piles.abut} := 36$ EACH $N_{piles.pier} := 45$ EACH (I $Total_{701.09683} := (N_{piles.abut} + N_{piles.pier}) \cdot 2$ 2 701-95780 Pile. Steel H, HP 12x74		EACH

O2-02925 Waterproofing Membrane System Alternatives B1a & B1b:		
Approx. Length Along		
Tops of Arches: $L_{top.arch.span.A} := 95 \ ft$	top.arch.span.B := 130 ft	$L_{top.arch.span.C} \coloneqq 95 \ ft$
$Total_{702.02925} := \operatorname{ceil} \left(\left(L_{top.arch.span.A} + L_{top.arch.span.B} + L_{top.arch.span.B} \right) \right)$	$(m,C) \cdot (W_s - W_{spandrel.walls})$	$(\mathbf{r}^2) \cdot \mathbf{f} \mathbf{t}^{-2} \mathbf{f} \mathbf{t}^2$
		$Total_{702.02925} = 21786 \ ft^2$
02-03607 Cored Hole in Concrete		
Alternative B1a:		
$Total_{702.03607} := \operatorname{ceil} \left(N_{micropiles} \cdot 2 \right)$		<i>Total</i> _{702.03607} = 40 EACH
02-04325 Temporary Shoring		
Alternatives B1a & B1b:		
$Total_{702.04325} := 1$ LSUM		$Total_{702.04325} = 1$ LSUM
02-51005 Concrete, A, Substructure		
Alternative B1b:		
Note: Concrete piers and abutments will be fully remove	ed and replaced.	
Height of Bent Caps: $H_{bent.caps} := 8 ft$	(Approximate)	
Width of Bent Caps: $W_{bent.caps} \coloneqq 11 \ ft$	(Approximate)	
Length of Bent Caps: $L_{bent.caps} := W_s + 12 ft \cdot 2 = 96 ft$	(Approximate)	
$Total_{702.51005} \coloneqq \operatorname{Ceil} \left(H_{bent.caps} \cdot W_{bent.caps} \cdot L_{bent.caps} \cdot 4 \cdot yd^{-3}, 0 \right)$.1) yd^3	$Total_{702.51005} = 1252.6 \ yd^3$
02-51015 Concrete, B, Footings		
Alternative B1b:		
$Total_{702.51015} := \operatorname{Ceil} \left(W_{footing,bent} \cdot H_{footing,bent} \cdot L_{footing,bent} \cdot 4 \cdot y_{d} \right)$	$(l^{-3}, 0.1) y d^3$	$Total_{702.51015} = 889.6 \ yd^3$
02-51046 Concrete. Foundation Seal		
Alternative B1b:		
$Total_{702.51046} := \operatorname{Ceil}\left(\left(W_{footing.bent} + 3 \ ft\right) \cdot \left(L_{footing.bent} + 3 \ ft\right) \cdot$	$D_{foundation.seal} \cdot yd^{-3}, 0.1 ight)$	yd^3 Total _{702.51046} = 263.5 yd ³
02-51863 Field Drilled Hole in Concrete		
Alternative B1a:		
Number of Holes per Pier: $N_{holes} = 600$	(Approximate)	
$Total_{702.51863} \coloneqq \operatorname{ceil} \left(N_{holes} \cdot 2 \right)$		$Total_{702.51863} = 1200$ EAC
02-92857 Concrete C, Substructure, Modified		
Alternative B1a:		
Note: Existing concrete within the pier cofferdams will b the micropiles have been installed the concrete will be Minimum concrete strength shall be 5 ksi.		
Cross-Sectional Area of Concrete: $A_{concrete. cofferdam.B1a} :=$	120.9 <i>ft</i> ² (Appr	roximate)
Length of Cofferdam: $L_{cofferdam} := 105 \ ft$	(Appr	roximate)

703-06028 Reinforcing Bars	
Alternative B1a:	
Reinforcement per Cu. Yd. of Concrete: $\gamma_{reinf, pier. repairs} := 200 \frac{lb}{vd^3}$	
$Total_{703.06028.B1a} := \operatorname{ceil} \left(Total_{702.76240} \cdot \gamma_{reinf, pier.repairs} \cdot Ib^{-1} \right) Ib$	Total _{703.06028.B1a} =94040 <i>lb</i>
Alternative B1b:	
Reinforcement per Cu. Yd. of Concrete: $\gamma_{reinf.sub.and.ftgs} := 60 \frac{lb}{yd^3}$	
$Total_{703.06028.B1b} := \operatorname{ceil}\left(\left(Total_{702.51005} + Total_{702.51015}\right) \cdot \gamma_{reinf.sub.and.figs} \cdot lb^{-1}\right) lb$	$Total_{703.06028.B1b} = 128532 \ lb$
703-06029 Reinforcing Bars, Epoxy Coated Alternative B1a:	
Thickness of Arches: $T_{arches} \coloneqq 2 ft$ (Estimated)	
Concrete Volume: $V_{conc.super.B1a.arches} \coloneqq \operatorname{Ceil}\left(\left(L_{top.arch.span.B} + L_{top.arch.span.C}\right) \cdot T_{arch}\right)$	hes $\cdot \left(\frac{W_s}{v}\right) \cdot yd^{-3}, 0.1$ $yd^3 = 400.5 yd^3$
$V_{conc.super.B1a.spandrel.walls} := \operatorname{Ceil}\left(\left(3200 \ ft^2\right) \cdot 1.5 \ ft \cdot 2 \cdot yd^{-3}, 0.5\right)$	$(1) yd^3 = 355.6 yd^3$
Reinforcement per Cu. Yd. of Concrete: $\gamma_{reinf.arches} := 80 \frac{lb}{vd^3}$ $\gamma_{reinf.spandh}$	lrel walls := 150 <u>lb</u>
yd ³	yd^3
$Total_{703.06029.B1a} := \operatorname{ceil} \left(\begin{pmatrix} V_{conc.super.B1a.arches} \cdot \gamma_{reinf.arches} \notin \\ + V_{conc.super.B1a.spandrel.walls} \cdot \gamma_{reinf.spandrel.walls} \end{pmatrix} \cdot \boldsymbol{lb}^{-1} \right) \boldsymbol{lb}$	Total _{703.06029.B1a} =85380 lb
Alternatives B1b:	
Concrete Volume: $V_{conc.super.B1b.arches} := \operatorname{Ceil} \left(\begin{pmatrix} L_{top.arch.span.A} \downarrow \\ + L_{top.arch.span.B} \downarrow \\ + L_{top.arch.span.C} \end{pmatrix} \cdot T_{arches} \cdot (W_s) \cdot y_s \right)$	$(yd^{-3}, 0.1)$ $yd^{3} = 1708.6 yd^{3}$
$V_{conc.super.B1b.spandrel.walls} := V_{conc.super.B1a.spandrel.walls} = 355.6 \ yd^3$	
$Total_{703.06029.B1b} := \operatorname{ceil} \left(\begin{pmatrix} V_{conc.super.B1b.arches} \bullet \gamma_{reinf.arches} \bullet \\ + V_{conc.super.B1b.spandrel.walls} \bullet \gamma_{reinf.spandrel.walls} \end{pmatrix} \bullet Ib^{-1} \right) Ib$	Total _{703.06029.B1b} = 190028 <i>lb</i>
704-51002 Concrete, C, Superstructure Alternative B1a:	
$Total_{704,51002,B1a} := V_{conc,super,B1a,arches} + V_{conc,super,B1a,spandrel,walls}$	$Total_{704.51002.B1a} = 756.1 \ yd^3$
$Total_{704.51002.B1a} := V_{conc.super.B1a.arches} + V_{conc.super.B1a.spandrel.walls}$ $Alternative B1b$	$Total_{704.51002.B1a} = 756.1 \ yd^3$
$Total_{704.51002.B1a} := V_{conc.super.B1a.arches} + V_{conc.super.B1a.spandrel.walls}$ $Alternative B1b:$ $Total_{704.51002.B1b} := V_{conc.super.B1b.arches} + V_{conc.super.B1b.spandrel.walls}$	
Alternative B1b: $Total_{704.51002.B1b} := V_{conc.super.B1b.arches} + V_{conc.super.B1b.spandrel.walls}$	
Alternative B1b: Total _{704.51002.B1b} := V _{conc.super.B1b.arches} + V _{conc.super.B1b.spandrel.walls} 706-04683 Railing, Ornamental	
Alternative B1b:	$Total_{704.51002.B1b} = 2064.2 \ yd^3$ ation where possible, and replacement
Alternative B1b: Total _{704.51002.B1b} := V _{conc.super.B1b.arches} + V _{conc.super.B1b.spandrel.walls} 706-04683 Railing. Ornamental Alternatives B1a & B1b: Note: This is pay item will cover the cost of of the removal, reuse and reinstalla	$Total_{704.51002.B1b} = 2064.2 \ yd^{3}$ ation where possible, and replacement

 yd^3

 $Total_{709,51821} = 24620 \ ft^2$

706-08496 Reinforced Concrete Moment Slab, 12 IN

	Alter	natives	B1a	& B1b:
--	-------	---------	-----	--------

Note: It is estimated that the moment slab will reach from beneath the concrete barrier railing to the inside edge of the first lane instead of the standard 8'-0" specified in Std. Drwg. 706-MSRW-01 & 02.

Width of Moment Slab: $W_{moment,slab} := 10 \text{ in} + 1 \text{ ft} + 10 \text{ ft} = 11.83 \text{ ft}$

 $Total_{706.08496} := \operatorname{ceil} \left(\left(L_s \cdot 2 + L_{appr,full.depth.S} \right) \cdot W_{moment.slab} \cdot yd^{-2} \right) yd^2$ $Total_{706.08496} = 916 yd^2$

706-51020 Railing, Concrete C

Alternatives B1a & B1b:

Note: This pay item will cover the concrete of the 34" tall HDOT aesthetic concrete bridge railing and the railing is anticipated to taper into the curbs at the ends of the bridge similar to the existing barrier curb, however the full railing dimensions will be conservatively used for this preliminary quantity.

Railing Area: $A_{railing} := 34 \text{ in} \cdot 10 \text{ in} = 2.36 \text{ ft}^2$

$$Total_{706,51020} := \text{Ceil} \left(A_{railing} \cdot (L_s \cdot 2 + L_{S,curb}) \cdot yd^{-3}, 0.1 \right) yd^3$$

 $Total_{706,51020} = 65.3$

709-51821 Surface Seal

Alternatives B1a & B1b:

Width of Surface Seal: $W_{surface.seal} := W_{clr} + (34 in + 10 in + (34 in - 9 in) + (W_s - W_{clr} - 10 in \cdot 2)) = 76.2 ft$

 $Total_{709.51821} \coloneqq \operatorname{ceil} \left(W_{surface.seal} \cdot L_s \cdot ft^{-2} \right) ft^2$

710-XXXXX Limestone

Alternatives B1a & B1b: Note: This pay item will need to be a unique pay item and will cover all costs assoicated with the removal, storage,

replacement as necessary, and reinstallation of the limestone facade on the spandrel walls, bents, and railing.

(Approximate)

Area of Limestone: $A_{limestone} := 4000 \ ft^2$

713-04331 Temporary Causeway

Alternatives B1a & B1b: Estimated at \$400,000.		
$Total_{715.09938} := 1$ LSUM	$Total_{715.09938} = 1$	LSUM
715-05407 Pipe, End Bent Drain, 6 IN Alternatives B1a & B1b:		

Note: End bent drain pipe is proposed to run along both spandrel walls, on both span faces of pier bents, and at abutment bents.

$Total_{715.05407} \coloneqq \operatorname{ceil}($	$\left(\left(L_{top.arch.span.B}+L_{top.arch.span.B}+L_{top.arch.span.C}\right)\cdot 2 \downarrow\right)\cdot ft^{-1}\right)ft$	$Total_{715.05407} = 1131 \ ft$
	$\left(+\left(W_{s}-W_{spandrel,walls}\right)\cdot 6\right)$	

715-09938 Pipe, Bridge Deck Drain System

Alternatives B1a & B1b: Estimated at \$10,000 per cost on similar project. Total_{715,09938}:= 1 LSUM

LSUM

 $Total_{715.09938} = 1$

715-91361 Pipe PVC 6 IN Alternatives B1a & B1b:		
	valle at each corpor of each open	
Note: Drainage from end bent pipe will outlet through the spandrel w	waits at each comer of each span.	
Number of Outlets: $N_{outlets} := 12$ EACH		
$Total_{715.91362} \coloneqq \operatorname{ceil} \left(N_{outlets} \cdot \left(T_{arches} + 1 \ ft \right) \cdot ft^{-1} \right) ft$	$Total_{715.91362} = 36 \ ft$	
720-45145 Inlet, J10 Modified		
Alternatives B1a & B1b:		
Number of Inlets: $N_{inlets} = 8$ EACH		
$Total_{720.45145} := N_{inlets}$	$Total_{720.45145} = 8$	EACH
801-04308 Road Closure Sign Assembly		
Alternatives B1a & B1b:		
Estimated per preliminary MOT evaluation.		
$Total_{801.04308} := 6$ EACH	$Total_{801.04308} = 6$	EACH
801-06625 Detour Route Marker Assembly		
Alternatives B1a & B1b:		
Estimated per preliminary MOT evaluation.		
<i>Total</i> _{801.06625} := 28 EACH	$Total_{801.06625} = 28$	EACH
801-06640 Construction Sign, A		
Alternatives B1a & B1b:		
Estimated per preliminary MOT evaluation.		
$Total_{801.06640} := 12$ EACH	$Total_{801.06640} = 12$	EACH
801-06775 Maintaining Traffic, Roadway		
Alternatives B1a & B1b:		
Estimated at \$35,000 per cost on similar project.		
$Total_{801.06775.Roadway} := 1$ LSUM	$Total_{801.06775.Roadway} = 1$	LSUM
801-06775 Maintaining Traffic, Waterway		
Alternatives B1a & B1b:		
Estimated at \$25,000 per cost on similar project.		
$Total_{801.06775.Waterway} \coloneqq 1$ LSUM	$Total_{801.06775.Waterway} = 1$	LSUM
801-07118 Barricade, III-A		
Alternatives B1a & B1b:		
Estimated per preliminary MOT evaluation.		
$Total_{801.07118} := 96 \ ft$	$Total_{801.07118} = 96 \ ft$	
801-07119 Barricade, III-B		
Alternatives B1a & B1b:		
Estimated per preliminary MOT evaluation.		
$Total_{801.07119} := 48 \ ft$	$Total_{801.07119} = 48 \ ft$	

Estimated per preliminary MOT e	valuation.		
<i>Total</i> _{801.11642} := 8 EACH			<i>Total</i> _{801.11642} = 8 EACH
02-04993 Sign, Interpretive			
Alternatives B1a & B1b:			
Estimated at \$10,000.			
$Total_{802.04993} := 1$ LSUM			$Total_{802.04993} = 1$ LSUM
05-06595 Conduit, PVC, 2 IN			
Alternatives B1a & B1b:			
Note: Conduit for ornamental ligh	ting.		
Height of Light Pedestals:	$H_{pedestal} := 7 ft$		
Number of Light Pedestals:	$N_{pedestal} := 4$	(Per side)	
Additional Length Percentage:	$P_{inc.length} := 15\%$	(Add'l percentage of directly accounted for	length for that which may not be r)
$Total_{805.06595} \coloneqq \operatorname{ceil} \left(\left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) = \operatorname{ceil} \left(\left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) \right) = \operatorname{ceil} \left(\left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) \right) = \operatorname{ceil} \left(\left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) \right) = \operatorname{ceil} \left(\left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) \right) = \operatorname{ceil} \left(\left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) \right) = \operatorname{ceil} \left(\left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) \right) = \operatorname{ceil} \left(\left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) \right) = \operatorname{ceil} \left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) = \operatorname{ceil} \left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) = \operatorname{ceil} \left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) = \operatorname{ceil} \left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) = \operatorname{ceil} \left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) \right) = \operatorname{ceil} \left(\left(L_s + H_{pedestal} \cdot 2 \right) \right) = \operatorname{ceil} \left(L_s + H_{pedestal} \cdot 2 \right) = \operatorname{ceii} \left(L_s + H_{pedestal}$	$2 \cdot N_{pedestal}) \cdot 2) \cdot (1 + P_{inc.loc})$	$_{ength}$) ft^{-1}) ft	$Total_{805.06595} = 873 \ ft$
07-04744 Lighting, Ornamental			
Alternatives B1a & B1b:			
Note: This pay item will saver the			
		l reinstallation of the existi	ng ornate lighting on the bridge.
Estimated at \$15,000 per cost on		I reinstallation of the existi	
		I reinstallation of the existi	ng ornate lighting on the bridge. $Total_{807.04744} = 1$ LSUM
Estimated at \$15,000 per cost on <i>Total</i> _{807.04744} := 1 LSUM	similar project.	I reinstallation of the existi	
Estimated at \$15,000 per cost on <i>Total</i> _{807.04744} := 1 LSUM 08-10031 Line, Multi-Component,	similar project.	I reinstallation of the existi	
Estimated at \$15,000 per cost on <i>Total</i> _{807.04744} := 1 LSUM 08-10031 Line, Multi-Component, <i>Alternatives B1a & B1b:</i>	similar project. Broken, White, 4 IN		$Total_{807.04744} = 1$ LSUM
Estimated at \$15,000 per cost on <i>Total</i> _{807.04744} := 1 LSUM 08-10031 Line, Multi-Component,	similar project. Broken, White, 4 IN		$Total_{807.04744} = 1$ LSUM
Estimated at \$15,000 per cost on <i>Total</i> _{807.04744} := 1 LSUM 08-10031 Line, Multi-Component, <i>Alternatives B1a & B1b:</i>	similar project. Broken, White, 4 IN <i>ne.broken.white</i> := $(L_s + L_{appr.full})$		$Total_{807.04744} = 1$ LSUM
Estimated at \$15,000 per cost on $Total_{807.04744} := 1$ LSUM 08-10031 Line. Multi-Component. Alternatives B1a & B1b: Length of Broken White Line: L_{lir} $Total_{808.10031} := ceil (L_{line.broken.white} \cdot ft)$	similar project. Broken, White, 4 IN ne.broken.white $:= (L_s + L_{appr.full})$ t^{-1} ft		$Total_{807.04744} = 1$ LSUM
Estimated at \$15,000 per cost on $Total_{807.04744} := 1$ LSUM 08-10031 Line. Multi-Component. Alternatives B1a & B1b: Length of Broken White Line: L_{lir} $Total_{808.10031} := ceil (L_{line.broken.white} \cdot ft)$	similar project. Broken, White, 4 IN ne.broken.white $:= (L_s + L_{appr.full})$ t^{-1} ft		$Total_{807.04744} = 1$ LSUM
Estimated at \$15,000 per cost on $Total_{807.04744} := 1$ LSUM 08-10031 Line, Multi-Component, Alternatives B1a & B1b: Length of Broken White Line: L_{lin} $Total_{808.10031} := ceil (L_{line.broken.white} \cdot ft$ 08-10033 Line, Multi-Component,	similar project. Broken, White, 4 IN $he, broken, white := (L_s + L_{appr, full})$ $f^{-1}) ft$ Solid, White, 4 IN		$Total_{807.04744} = 1$ LSUM
Estimated at \$15,000 per cost on $Total_{807.04744} := 1$ LSUM 08-10031 Line. Multi-Component. Alternatives B1a & B1b: Length of Broken White Line: L_{lin} $Total_{808.10031} := ceil (L_{line.broken.white} \cdot ft$ 08-10033 Line. Multi-Component. Alternatives B1a & B1b:	similar project. Broken, White, 4 IN $he, broken, white := (L_s + L_{appr,ful} + L_{appr,ful})$ ft Solid, White, 4 IN solid, white := 50 ft	$u_{depth,S} + 30 ft \cdot 2 \cdot 0.25 = 20$	$Total_{807.04744} = 1$ LSUM
Estimated at \$15,000 per cost on Total _{807.04744} := 1 LSUM 08-10031 Line. Multi-Component. Alternatives B1a & B1b: Length of Broken White Line: L_{lin} Total _{808.10031} := ceil ($L_{line.broken.white} \cdot ft$ 08-10033 Line. Multi-Component. Alternatives B1a & B1b: Length of Solid White Line: $L_{line.total_{808.10033}}$:= ceil ($L_{line.solid.white} \cdot ft^-$	similar project. Broken, White, 4 IN $t = (L_s + L_{appr:ful} + L_{appr:ful})$ t = 1 ft Solid, White, 4 IN solid.white := 50 ft t^{-1} ft	$u_{depth,S} + 30 ft \cdot 2 \cdot 0.25 = 20$	$Total_{807.04744} = 1 LSUM$ 1.6 ft $Total_{808.10031} = 202 \text{ ft}$
Estimated at \$15,000 per cost on Total _{807.04744} := 1 LSUM 08-10031 Line. Multi-Component. Alternatives B1a & B1b: Length of Broken White Line: L_{lir} Total _{808.10031} := ceil ($L_{line.broken.white} \cdot ft$ 08-10033 Line, Multi-Component. Alternatives B1a & B1b: Length of Solid White Line: $L_{line.}$ Total _{808.10033} := ceil ($L_{line.solid.white} \cdot ft^{-1}$ 08-10034 Line. Multi-Component.	similar project. Broken, White, 4 IN $t = (L_s + L_{appr:ful} + L_{appr:ful})$ t = 1 ft Solid, White, 4 IN solid.white := 50 ft t^{-1} ft	$u_{depth,S} + 30 ft \cdot 2 \cdot 0.25 = 20$	$Total_{807.04744} = 1 LSUM$ 1.6 ft $Total_{808.10031} = 202 \text{ ft}$
Estimated at \$15,000 per cost on $Total_{807.04744} := 1$ LSUM 08-10031 Line, Multi-Component, Alternatives B1a & B1b: Length of Broken White Line: L_{lin} $Total_{808.10031} := ceil (L_{line,broken,white} \cdot ft$ 08-10033 Line, Multi-Component, Alternatives B1a & B1b: Length of Solid White Line: $L_{line,I}$ $Total_{808.10033} := ceil (L_{line,solid,white} \cdot ft^{-1})$	similar project. Broken, White, 4 IN $t = (L_s + L_{appr:ful} + L_{appr:ful})$ t = 1 ft Solid, White, 4 IN solid.white := 50 ft t^{-1} ft	$u_{depth,S} + 30 ft \cdot 2 \cdot 0.25 = 20$	$Total_{807.04744} = 1 LSUM$ 1.6 ft $Total_{808.10031} = 202 \text{ ft}$
Estimated at \$15,000 per cost on $Total_{807.04744} := 1$ LSUM 08-10031 Line, Multi-Component, Alternatives B1a & B1b: Length of Broken White Line: L_{lin} $Total_{808.10031} := ceil (L_{line, broken, white} \cdot ft$ 08-10033 Line, Multi-Component, Alternatives B1a & B1b: Length of Solid White Line: $L_{line, I}$ $Total_{808.10033} := ceil (L_{line, solid, white} \cdot ft^{-1}$ 08-10034 Line, Multi-Component, Alternatives B1a & B1b:	similar project. Broken, White, 4 IN $t = (L_s + L_{appr:ful} + L_{appr:ful})$ t = 1 ft Solid, White, 4 IN solid.white := 50 ft t^{-1} ft	$u_{depth,S} + 30 ft \cdot 2 \cdot 0.25 = 20$	$Total_{807.04744} = 1 LSUM$ 1.6 ft $Total_{808.10031} = 202 \text{ ft}$
Estimated at \$15,000 per cost on $Total_{807.04744} := 1$ LSUM 08-10031 Line. Multi-Component. Alternatives B1a & B1b: Length of Broken White Line: L_{lin} $Total_{808.10031} := ceil (L_{line.broken.white} \cdot ft$ 08-10033 Line, Multi-Component. Alternatives B1a & B1b: Length of Solid White Line: $L_{line.}$ $Total_{808.10033} := ceil (L_{line.solid.white} \cdot ft^{-1}$ 08-10034 Line, Multi-Component. Alternatives B1a & B1b:	similar project. Broken, White, 4 IN me.broken.white := $(L_s + L_{appr,ful})$ f^{-1} ft Solid, White, 4 IN solid.white := 50 ft f^{-1} ft Solid, Yellow, 4 IN f^{-1} ft	(Approximate)	$Total_{807.04744} = 1 LSUM$ 1.6 ft $Total_{808.10031} = 202 \text{ ft}$
Estimated at \$15,000 per cost on Total _{807.04744} := 1 LSUM 08-10031 Line, Multi-Component, Alternatives B1a & B1b: Length of Broken White Line: L_{lin} Total _{808.10031} := ceil ($L_{line,broken,white} \cdot ft$ 08-10033 Line, Multi-Component, Alternatives B1a & B1b: Length of Solid White Line: $L_{line,t}$ Total _{808.10033} := ceil ($L_{line,solid,white} \cdot ft^{-1}$ 08-10034 Line, Multi-Component, Alternatives B1a & B1b: Length of Solid Yellow Line: L_{t} Length of Solid Yellow Line: L_{t} Total _{808.10034} := ceil ($L_{line,solid,yellow} \cdot ft^{-1}$	similar project. Broken, White, 4 IN $he, broken, white := (L_s + L_{appr.full})$ $f^{-1}) ft$ Solid, White, 4 IN solid, white := 50 ft $f^{1}) ft$ Solid, Yellow, 4 IN $f_{line.solid, yellow} := 1300 ft$ $f^{-1}) ft$	(Approximate) (Approximate)	$Total_{807.04744} = 1 LSUM$ 1.6 ft $Total_{808.10031} = 202 \text{ ft}$ $Total_{808.10033} = 50 \text{ ft}$
Estimated at \$15,000 per cost on Total _{807.04744} := 1 LSUM 08-10031 Line. Multi-Component. Alternatives B1a & B1b: Length of Broken White Line: L_{lin} Total _{808.10031} := ceil ($L_{line.broken.white} \cdot ft$ 08-10033 Line. Multi-Component. Alternatives B1a & B1b: Length of Solid White Line: $L_{line.}$ Total _{808.10033} := ceil ($L_{line.solid.white} \cdot ft^{-1}$ 08-10034 Line. Multi-Component. Alternatives B1a & B1b: Length of Solid Yellow Line: $L_{line.}$	similar project. Broken, White, 4 IN $he, broken, white := (L_s + L_{appr.full})$ $f^{-1}) ft$ Solid, White, 4 IN solid, white := 50 ft $f^{1}) ft$ Solid, Yellow, 4 IN $f_{line.solid, yellow} := 1300 ft$ $f^{-1}) ft$	(Approximate) (Approximate)	$Total_{807.04744} = 1 LSUM$ 1.6 ft $Total_{808.10031} = 202 \text{ ft}$ $Total_{808.10033} = 50 \text{ ft}$
Estimated at \$15,000 per cost on Total _{807.04744} := 1 LSUM 08-10031 Line, Multi-Component, Alternatives B1a & B1b: Length of Broken White Line: L_{lin} Total _{808.10031} := ceil ($L_{line,broken,white} \cdot ft$ 08-10033 Line, Multi-Component, Alternatives B1a & B1b: Length of Solid White Line: $L_{line,a}$ Total _{808.10033} := ceil ($L_{line,solid,white} \cdot ft^{-1}$ 08-10034 Line, Multi-Component, Alternatives B1a & B1b: Length of Solid Yellow Line: L Total _{808.10034} := ceil ($L_{line,solid,yellow} \cdot ft^{-1}$ 08-10051 Transverse Marking, Mu Alternatives B1a & B1b:	similar project. Broken, White, 4 IN $he, broken, white := (L_s + L_{appr.full})$ $f^{-1}) ft$ Solid, White, 4 IN solid, white := 50 ft $f^{1}) ft$ Solid, Yellow, 4 IN $f_{line.solid, yellow} := 1300 ft$ $f^{-1}) ft$	(Approximate) (Approximate)	$Total_{807.04744} = 1 LSUM$ 1.6 ft $Total_{808.10031} = 202 \text{ ft}$ $Total_{808.10033} = 50 \text{ ft}$

Length of Crosswalk Line: $L_{crosswalk, line} := 450 \ ft$ (Approximate) $Total_{808, 10056} := ceil (L_{crosswalk, line} \cdot ft^{-1}) \ ft$ D8-10077 Pavement Message Markings, Multi-Component, Lane Indication Arrow Alternatives B1a & B1b: Number of Turn Arrows: $N_{arrows} := 2$ EACH $Total_{808, 10077} := N_{arrows}$ D8-12032 Grooving for Pavement Markings Alternatives B1a & B1b: $Total_{808, 12032} := ceil ((L_{line, broken, white} + L_{line, solid, white} + L_{line, solid, yellow} + L_{stop, line} + L_{crosswalk, line}) \cdot ft^{-1}$	$Total_{808.10056} = 450 \ ft$
D8-10077 Pavement Message Markings, Multi-Component, Lane Indication Arrow Alternatives B1a & B1b: Number of Turn Arrows: $N_{arrows} \coloneqq 2$ EACH $Total_{808.10077} \coloneqq N_{arrows}$ D8-12032 Grooving for Pavement Markings Alternatives B1a & B1b:	$Total_{808.10056} = 450 \ ft$
Alternatives B1a & B1b: Number of Turn Arrows: $N_{arrows} := 2$ EACH $Total_{808.10077} := N_{arrows}$ B-12032 Grooving for Pavement Markings Alternatives B1a & B1b:	
Number of Turn Arrows: $N_{arrows} \coloneqq 2$ EACH Total _{808.10077} := N_{arrows}	
Total _{808.10077} := N _{arrows} 8-12032 Grooving for Pavement Markings Alternatives B1a & B1b:	
Alternatives B1a & B1b:	Total _{808.10077} =2 EACH
	t) ft
	Total_{808,12032} = 2112 ft

Appendix E:

Bridge Existing Condition and Applicable Design Criteria Table

LEVEL ONE CONTROLLING CRITERIA CHECKLIST

Date: 07/02/2021

Submittal: Historic Bridge Alternatives Analysis Des. No. 1900011 Is route on the National Truck Network? □ Yes ⊠ No Route: SR 933 over St. Joseph River Design Year AADT: 16,110 vpd (2043) Functional Classification: Urban (Built-Up) Principal Arterial Terrain: Level

			Alter	native B1a		Alternative B1b				
Project Scope of Work: 3R (Non-Freeway)	Design Criteria	Existing	Does the proposed design satisfy the criteria?			Does the proposed design satisfy the criteria?				
*Enter the minimum criteria below.	Reference	Condition	Yes	No ⁽¹⁾⁽²⁾	N/A	Yes	No ⁽¹⁾⁽²⁾	N/A		
1. Design Speed: 35 mph	IDM Fig. 55-3E	35 mph	35 mph			35 mph				
2. Lane Width, Mainline: 10 ft Auxiliary Lanes: 10 ft	IDM Fig. 55-3E	10 ft (Min.) 11 ft	10 ft (Min.) 11 ft			10 ft (Min.) 11 ft				
4. Bridge Clear Roadway Width: 55 ft ⁽³⁾	IDM Fig. 412-2A & IDM Fig. 55-3E		55 ft			55 ft				
5. Design Loading Structural Capacity: HS20-44 (Alt. B1a) HL-93 (Alt. B1b)	IDM Fig. 412-2A & IDM Fig. 55-3E			H20-44		HL-93				
8b. Stopping Sight Distance, Vertical Curve (Crest Only): 250 ft	IDM Fig. 55-3E	> 250 ft	>250 ft			>250 ft				
9. Maximum Grades 9 %	IDM Fig. 55-3E	4.40 %	4.40 %			4.40 %				
10. Travel Lane Cross Slope: 2 %	IDM Fig. 55-3E	2 %	2 %			2 %				
13. Americans with Disabilities Act (ADA)	PROWAG	Does Not Meet	Meets			Meets				
14. Bridge Railing Test Level ⁽³⁾ (circle one of the following) TL-2 (TL-3) TL-5	IDM 404-4.0	Unknown	TL-3			TL-3				

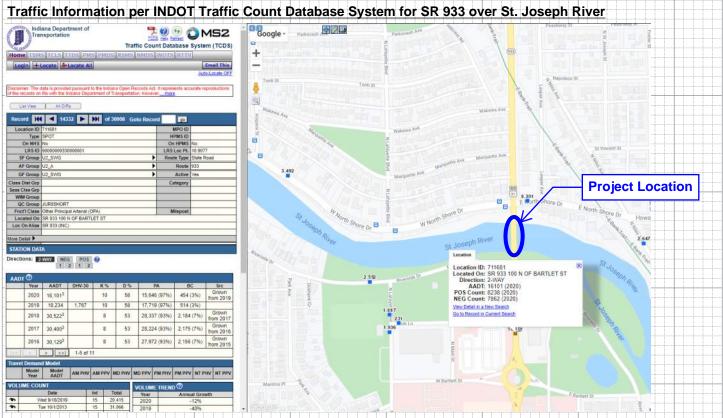
(1) For high speed facilities and Freeways, items 1-3, 5-6 & 8-12 require a Level One design exception when minimum criteria are not satisfied.

(2) For low speed facilities, items 1, 2(NTN only), 5 & 12 require a Level One design exception when minimum criteria are not satisfied.

⁽³⁾ A Level Two design exception is required for items not referenced in note 1 or 2 when minimum criteria are not satisfied. Include a brief explanation with the design computations.

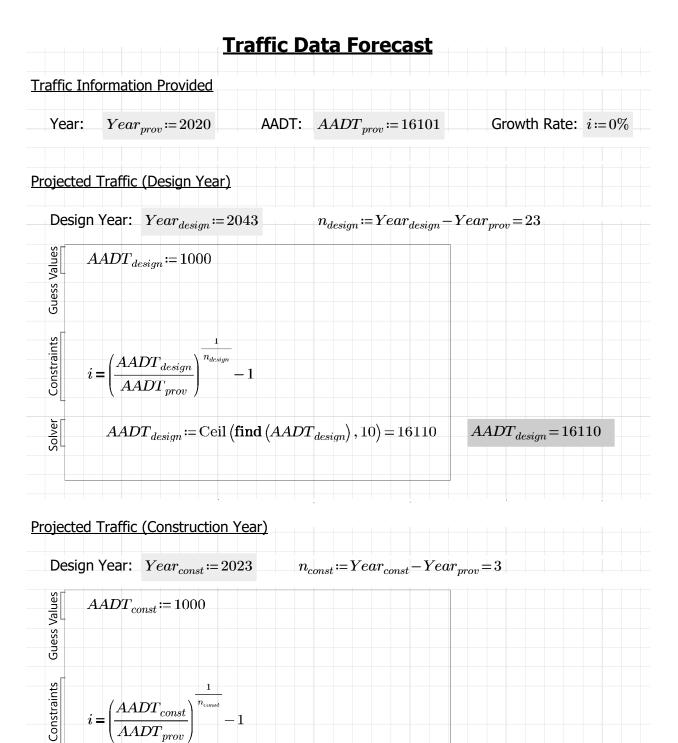
*The following design criteria have been removed from the checklist above since not applicable to either alternative: Usable Shoulder Width (uncurbed sections); Paved Shoulder Width (uncurbed sections); Horizontal Curve, Minimum Radius; Superelevation Transition Length and Distribution (on tangent/on curve); Stopping Sight Distance, Horizontal Curve; Superelevation Rate; Minimum Vertical Clearance.

Are there plan revisions from the previous submittal that affect Level One criteria? \boxtimes Yes \square No Date 6/30/2021


Submitted By ACS Date 5/4/2021 INDOT location or Consultant: Lochmueller Group, Inc.

Checked By MV Date 7/1/2021

INDOT reviewer Click or tap here to enter text. Date Click or tap to enter a date.


LOCHMUELLER GROUP

PROJECT NAME	SR 933 ov	ver St. Joseph River	
DES/PROJECT N	UMBER 1900	0011	
LOCH GROUP PR	ROJECT NUMBE	R 120-3001-01B	
MADE BY A	CS	DATE 03/30/2021	
	KA	DATE 07/01/2021	
SHEET	1 OF	=	

A growth rate of 0% has been used for traffic forecasting based on an INDOT provided traffic forecast further north on SR 933 than this project site.

	 ·····					 *****	++	 	 	
	 	· ···· · · · · · · · · · · · · · · · ·	 			 ******	+++++	 	 	
	 		 	· + · · · · + · · · · + · · · · + · · · · + · · · · + · · · · + · · · · + · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · · + · · · · · + · · · · · + · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · + · · · · · · + · · · · · + ·		 ÷	·	 	 	
	 		 			 · • • • • • • • • • • • • • • • • • • •		 	 	
										-
						1 1 1 1 1 1	1			
	 		 			 ÷	· · · · · · · · · · · · · · · · · · ·	 	 	
	 		 			 ÷		 	 	
	 		 	4		 *****	4	 	 	
	 		 		·····	 ÷	++	 	 	

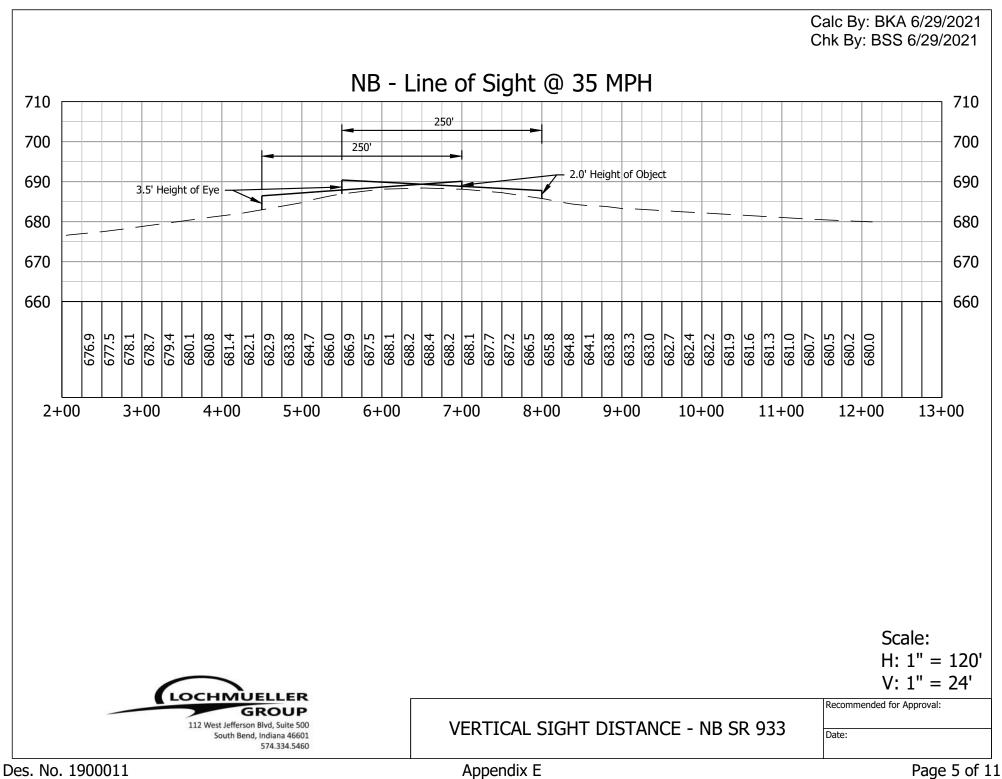
Page 1 of 1

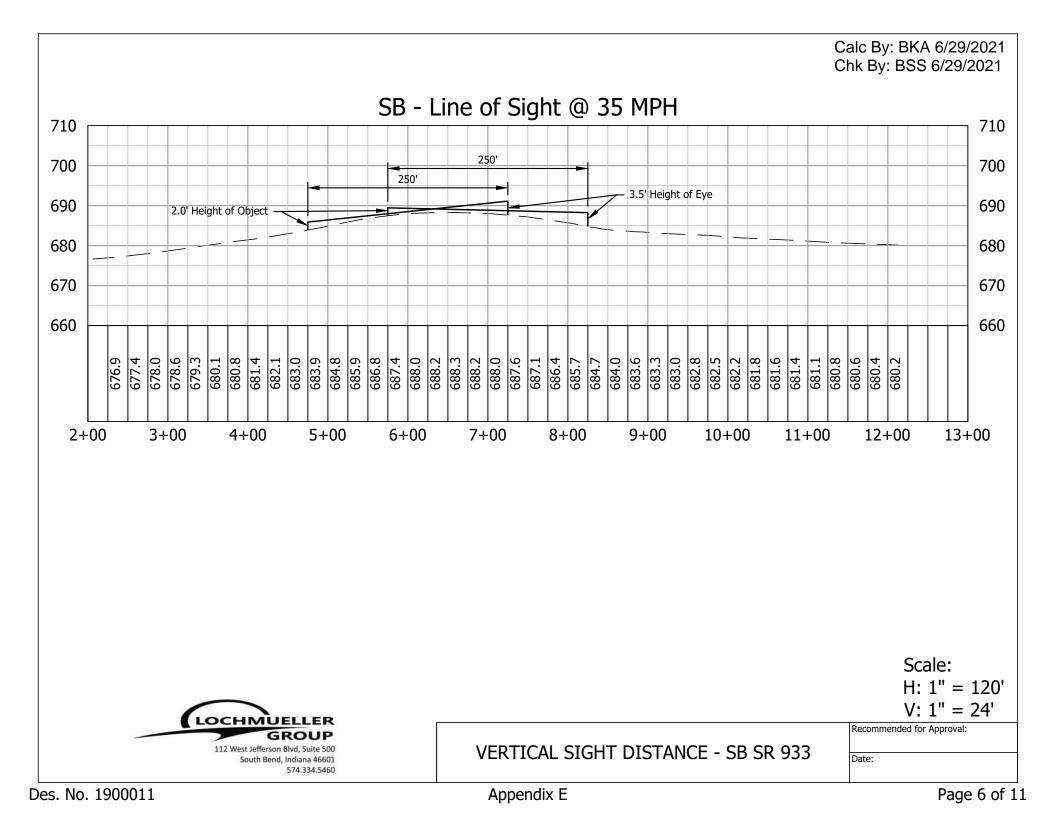
 $AADT_{const} = 16110$

Solver

 $AADT_{const} \coloneqq \text{Ceil} \left(\text{find} \left(AADT_{const} \right), 10 \right) = 16110$

DESIGN SPEED (mph)	ROUNDED SSD FOR DESIGN ¹ (ft)		$ \begin{array}{c c} \text{JN} \\ \text{FOR DESIGN}^{1} \\ \text{CD} \\ \text{(ft)} \\ \end{array} \begin{array}{c} \text{CALCULATED} \\ K \text{VALUE}^{2} \\ \end{array} $		<i>K</i> VALUE ROUNDED FOR DESIGN	
(mpn)	Des.	Min.	Des.	Min.	Des.	Min.
15	115	80	6.1	3.0	7	3
20	155	115	11.1	6.1	12	7
25	200	155	18.5	11.1	19	12
30	250	200	29.0	18.5	29	19
35	305	250	43.1	29.0	44	29
40	360	305	60.1	43.1	61	44
45	425	360	83.7	60.1	84	61
50	495	425	113.5	83.7	114	84
55	570	495	150.6	113.5	151	114
60	645	570	192.8	150.6	193	151
65	730	645	246.9	192.8	247	193
70	820	730	312.6	246.9	312	247


Notes:


- ¹ Stopping sight distance (SSD) is from Figure 42-1A.
- ² The K value is calculated using the rounded value for design stopping sight distance, eye height of 3.5 ft, and object height of 2 ft.
- 3. If curbs are present, and K > 167, proper pavement drainage should be ensured near the high point of the curve.

K VALUE FOR CREST VERTICAL CURVE (Stopping Sight Distance – Passenger Car)

Figure 44-3A

Back

Bridge Barrier Warrants

Determine appropriate Test Level TL-2, TL-3 or TL-5 Barrier requirement

The analysis is done according to Section 404-4.0 in the **Indiana Design Manual** by comparing the Adjusted AADT values to the test level ranges shown in the appropriate Barrier Test Level Selection Table for the project design speed.

Roadway Traffic Data and Geometric Design Requirements:

Design Year:	<i>y_c</i> := 2043	Design Year AADT:	$AADT_c := 16110$
Percentage Trucks:	$P_{trucks} \coloneqq 7.0\%$	Design Speed:	<i>DS</i> := 35 <i>mph</i>
Barrier Offset, Right:	$Offset_R := 1 \ ft$	Barrier Offset, Left:	$Offset_L := 1 \ ft$

Right Side Adjustment Factors:

$K_{g_R} := 1.6$	Grade Traffic Adjustment Factor, See Figure 49-6B (4.40% Grade)
$K_{c_R} := 1.0$	Curvature Traffic Adjustment Factor, See Figure 49-6B (Tangent)
$K_{s_R} := 1.3$	Traffic Adjustment Factor, See Figure 49-6C (Approx. 30 ft from top of deck to flowline; High Occupancy Land Use)
<u>Left Side Adjı</u>	ustment Factors:
$K_{g_L} \coloneqq 1.6$	Grade Traffic Adjustment Factor, See Figure 49-6B (4.40% Grade)
$K_{c_L} := 1.0$	Curvature Traffic Adjustment Factor, See Figure 49-6B (Tangent)
$K_{s_L} := 1.3$	Traffic Adjustment Factor, See Figure 49-6C (Approx. 30 ft from top of deck to flowline; High Occupancy Land Use)

Adjusted Average Daily Truck Traffic, T (1.000's) for Traffic Barrier Test Levels:

$T_{P} := \frac{AADT_{c} \cdot K_{g_{R}} \cdot K_{c_{R}} \cdot K_{s_{R}}}{ADT_{c} \cdot K_{g_{R}} \cdot K_{c_{R}} \cdot K_{s_{R}}} = 33.51$	$T_{I} \coloneqq \frac{AADT_{c} \cdot K_{g_{L}} \cdot K_{c_{L}} \cdot K_{s_{L}}}{33.51}$	[IDM 49-6.02(03)]
1000	L 1000	

Select the Appropriate Design Figure for the Railing Test Level Section:

Recall the Design Speed: DS = 35 mph

Use IDM FIGURE 49-6D(40) for Undivided With 4 Lanes or Fewer.

Note: An IDM Figure 49-6D is not available for 35 mph, so the 40 mph IDM Figure 49-6D is conservatively used.

Page 1 of 2

Right Side Barrier Warrant Test Level Selection:

Recall:Truck Percent:
$$P_{trucks} = 7\%$$
Edge of Travel Lane to barrier front face: $Offset_R = 1.00 ft$ Test Level Limits: $Low_R := 7.1$ $High_R := 55.6$

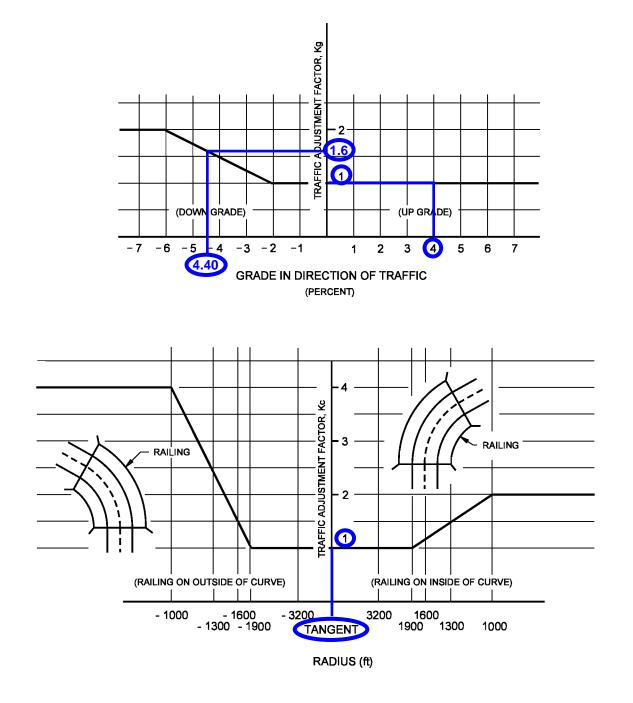
$$TL_{R} := \left| \begin{array}{c} \text{if } T_{R} < Low_{R} \\ \left\| 2 \\ \text{if } Low_{R} \leq T_{R} < High_{R} \\ \left\| 3 \\ \text{if } T_{R} \geq High_{R} \\ \right\| 5 \end{array} \right|$$

Required Min. Test Level: $TL_R = 3$

(TL-2 minimum allowed per IDM 404-4.02 since Design Speed < or = 45 mph and route not on NHS, however TL-3 is required by this barrier warrant analysis.)

Left Side Barrier Warrant Test Level Selection:

Recall:	Truck Percent:	$P_{trucks} = 7\%$
	Edge of Travel Lane to barrier front face:	$Offset_L = 1.00 ft$
	Test Level Limits:	$Low_L := 7.1$


 $High_L := 55.6$

Required Min. Test Level: $TL_L = 3$

$$\begin{split} TL_L \coloneqq & \left| \begin{array}{c} \text{if } T_L < Low_L \\ & \left\| \begin{array}{c} 2 \\ \text{if } Low_L \leq T_L < High_L \\ & \left\| \begin{array}{c} 3 \\ \text{if } T_L \geq High_L \\ & \left\| \begin{array}{c} 5 \end{array} \right| \end{array} \right| \end{split} \end{split}$$

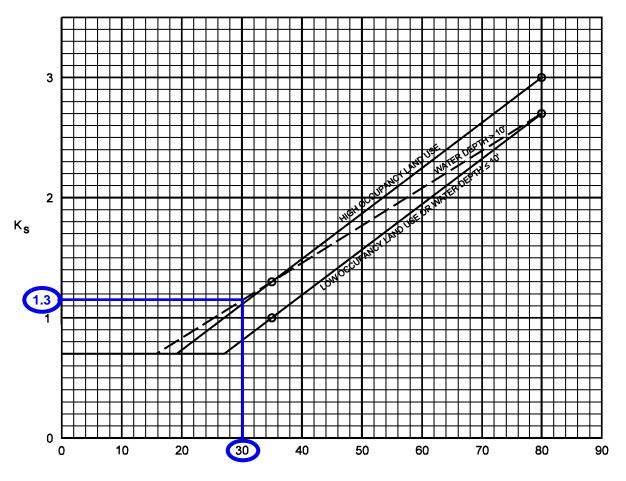

(TL-2 minimum allowed per IDM 404-4.02 since Design Speed < or = 45 mph and route not on NHS, however TL-3 is required by this barrier warrant analysis.)

FIGURE 49-6D(50): Minimum Test Level TL-2 is allowed per IDM 404-4.02, however Test Level TL-3 is the min. required. Therefore, **TL-3 Railing required for bridge**.

GRADE TRAFFIC-ADJUSTMENT FACTOR, Kg AND CURVATURE TRAFFIC-ADJUSTMENT FACTOR, Kc

Figure 49-6B

DECK HEIGHT ABOVE UNDER-STRUCTURE SURFACE (ft)

TRAFFIC-ADJUSTMENT FACTOR K_S, Deck Height and Under-Structure Shoulder Height Conditions

Figure 49-6C

	Site	Adjusted Construction-Year Average Annual Daily Traffic, T, (1000s) for Traffic-Barrier Test Levels								
C	haracteristics					Highway Type				
	Edge of		Divided, or Undivide			Undivided With		One-Way		
%	Travel Lane	1	With 5 or More Lane	es		4 Lanes or Fewer				
Trk	to Front Face		Test Level			Test Level			Test Level	
	Barrier, L_2 (ft)	TL-2	TL-4	TL-5	TL-2	TL-4	TL-5	TL-2	TL-4	TL-5
0~	<u>≤</u> 3	< 14.0	$14.0 \le T \le 280.7$	≥280.7	< 10.4	$10.4 \le T < 202.4$	≥202.4	< 7.0	$7.0 \le T < 140.4$	≥ 140.4
0≤ %	$3 < L_2 \leq 7$	< 18.0	$18.0 \le T < 335.1$	≥ 335.1	< 13.4	$13.4 \le T < 253.8$	≥253.8	< 9.0	$9.0 \le T \ 167.6$	≥167.6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$7 < L_2 \leq 12$	< 24.4	$24.4 \le T \le 452.0$	≥452.0	< 19.2	$19.2 \le T < 366.7$	≥ 366.7	< 12.2	12.2 < 226.0	≥226.0
~5	> 12	< 39.5	> 39.5	n/a	< 32.1	> 32.1	n/a	< 19.8	$19.8 \le T < 362.7$	≥ 362.7
	≤ <b>3</b>	< 9.8	$9.8 \le T < 79.7$	≥79.7	< 7.1	$7.1 \le T < 55.6$	≥ 55.6	< 4.9	$4.9 \le T < 39.9$	≥ 39.9
5≤ %	$3 < L_2 \leq 7$	< 12.7	$12.7 \le T < 89.8$	≥ 89.8	< 9.2	$9.2 \le T < 68.6$	≥68.6	< 6.4	$6.4 \le T < 44.9$	≥44.9
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$7 < L_2 \leq 12$	< 16.9	$16.9 \le T < 132.4$	≥132.4	< 12.8	$12.8 \le T < 102.3$	≥ 102.3	< 8.5	$8.5 \le T < 66.2$	≥ 66.2
×10	> 12	< 25.8	$25.8 \le T \le 183.6$	≥183.6	< 20.1	$20.1 \le T < 157.2$	≥157.2	< 12.9	$12.9 \le T < 91.8$	≥ 91.8
10<	≤ 3	< 7.5	$7.5 \le T < 46.4$	≥46.4	< 5.4	$5.4 \leq T < 32.2$	≥ 32.2	< 3.8	$3.8 \leq T < 23.2$	≥23.2
10≤ %	$3 < L_2 \leq 7$	< 9.8	$9.8 \le T < 51.9$	≥ 51.9	< 7.0	$7.0 \le T < 39.6$	≥ 39.6	< 4.9	$4.9 \le T < 26.0$	≥26.0
<15	$7 < L_2 \leq 12$	< 12.9	$12.9 \le T < 77.6$	≥77.6	< 9.6	$9.6 \le T < 59.4$	≥ 59.4	< 6.5	$6.5 \le T < 38.8$	≥38.8
<1 <i>5</i>	> 12	< 19.1	$19.1 \le T < 105.1$	≥ 105.1	< 14.6	$14.6 \le T < 89.6$	≥ 89.6	< 9.6	$9.6 \le T < 52.6$	≥ 52.6
15 <	≤ 3	< 6.1	$6.1 \le T < 32.8$	≥ 32.8	< 4.4	$4.4 \leq T < 22.7$	≥22.7	< 3.1	$3.1 \le T < 16.4$	≥16.4
15≤ %	$3 < L_2 \leq 7$	< 8.0	$8.0 \le T < 36.5$	≥36.5	< 5.6	$5.6 \le T < 27.9$	≥27.9	< 4.0	$4.0 \le T < 18.3$	≥18.3
<20	$7 < L_2 \leq 12$	< 10.4	$10.4 \le T < 54.9$	≥ 54.9	< 7.7	$7.7 \le T < 41.9$	≥41.9	< 5.2	$5.2 \le T \le 27.5$	≥27.5
~20	> 12	< 15.2	$15.2 \le T < 73.6$	≥73.6	< 11.5	$11.5 \le T < 62.7$	≥ 62.7	< 7.6	$7.6 \le T < 36.8$	≥36.8
20 <	≤ 3	< 5.1	$5.1 \le T < 25.3$	≥25.3	< 3.6	$3.6 \le T < 17.5$	≥17.5	< 2.6	$2.6 \leq T < 12.7$	≥12.7
20≤ %	$3 < L_2 \leq 7$	< 6.7	$6.7 \le T \le 28.1$	≥28.1	< 4.7	$4.7 \le T < 21.5$	≥21.5	< 3.4	$3.4 \le T < 14.1$	≥14.1
<25	$7 < L_2 \le 12$	< 8.8	$8.8 \le T < 42.4$	≥ 42.4	< 6.4	$6.4 \le T < 32.3$	≥ 32.3	< 4.4	$4.4 \le T \le 21.2$	≥21.2
~25	> 12	< 12.6	$12.6 \le T < 56.7$	≥ 56.7	< 9.5	$9.5 \leq T < 48.2$	≥48.2	< 6.3	$6.3 \leq T < 28.4$	≥28.4

MEDIAN-BARRIER OR BRIDGE-RAILING TEST-LEVEL SELECTION, DESIGN SPEED 40 mph

Figure 49-6D(40)

Appendix F: Alternatives Analysis Table

Alt.	Alt. Description	Meets Project Purpose & Need?	Construction Cost	R/W Amount & Cost	Total Cost	Other Factors	Feasible & Prudent?
A	No Build/Do Nothing	No	N/A	N/A	N/A	Deterioration	This alternative is feasible; however not prudent since it does not meet the project purpose and need.
B1a	Rehabilitation for Continued Vehicular Use Meeting Secretary of Interior's Standards for Rehabilitation (SISR) – Partial Replacement of Arches with Foundation Strengthening	No	\$8,608,000	0.52 acres (Temp. R/W) (\$20,000)	\$8,628,000	Historic bridge elements will be reused or recreated. One Level One design exception would be required. Approximately 150 linear feet of temporary and permanent stream impacts anticipated. No wetland impacts are expected.	This alternative is feasible with design exceptions; however not prudent since it does not meet the project purpose and need.
B1b	Rehabilitation for Continued Vehicular Use NOT Meeting Secretary of Interior's Standards for Rehabilitation (SISR) – Complete Replacement of Arches with Foundation Replacement	Yes	\$12,201,400	0.52 acres (Temp. R/W) (\$20,000)	\$12,221,400	Historic bridge elements will be reused or recreated. No Level One design exceptions would be required. Approximately 150 linear feet of temporary, and no permanent, stream impacts anticipated. No wetland impacts are expected.	This alternative is feasible and prudent.

Appendix G: Historic Bridge Field Check Meeting Minutes

MEETING MINUTES

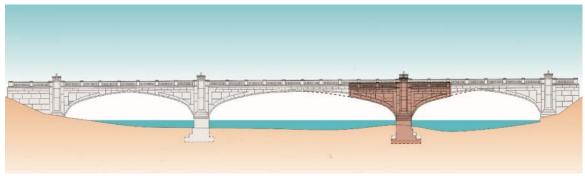
Meeting:	Virtual Scoping Field Check	
Prepared By:	Katlyn Shergalis, PE Structural Team Leader	
Date:	Wednesday, January 27, 2021	- 1:00 – 3:00PM CST
Project:	Contract B-42441 DES #1900011 – Leeper Park N	lichigan St. Bridge
Location:	Virtual – Microsoft Teams	
Attendees:	John Krueckeberg, PMP Mark Pittman, PE, MBA Steven Hauersperger Ashley Sharkey Stewart Michels Steven Travis Martha Chernet, PE Mahmoud Hailat, PE Gregory Klevitsky, PE Mary Kennedy Troy Jessop, PE Scott Zajac, PE Ruth Hook, CPESC, CESSWI Gary Quigg, MA, RPA Susan Al Abbas, PE Daniel Cooper, EIT Michael Vereb, PE Katlyn Shergalis, PE	INDOT LaPorte District – <u>jkrueckeberg@indot.in.gov</u> INDOT LaPorte District – <u>mapittman@indot.in.gov</u> INDOT LaPorte District – <u>shauersperger@indot.in.gov</u> INDOT LaPorte District – <u>assharkey@indot.in.gov</u> INDOT LaPorte District – <u>smichels@indot.in.gov</u> INDOT LaPorte District – <u>stravis2@indot.in.gov</u> INDOT Central Office – <u>mchernet@indot.in.gov</u> INDOT Central Office – <u>mhailat@indot.in.gov</u> INDOT Central Office – <u>gklevitsky@indot.in.gov</u> INDOT Central Office – <u>mkennedy@indot.in.gov</u> INDOT Central Office – <u>mkennedy@indot.in.gov</u> GAI Consultants – <u>t.jessop@gaiconsultants.com</u> Terracon Consultants, Inc. – <u>scott.zajac@terracon.com</u> Lochmueller Group – <u>rhook@lochgroup.com</u> Lochmueller Group – <u>salabbas@lochgroup.com</u> Lochmueller Group – <u>dcooper@lochgroup.com</u> Lochmueller Group – <u>mvereb@lochgroup.com</u> Lochmueller Group – <u>kshergalis@lochgroup.com</u>

Purpose: The purpose of this meeting was to discuss the existing conditions of the bridge and goals for the project.

Discussion and/or Comments:

1. <u>Review of Existing Information – Timeline</u>

 The bridge has been rehabilitated several times since its original construction in 1914. Original plans of the bridge are not available. Below is a brief summary of the rehabilitations that have been performed:


> 112 West Jefferson Blvd, Suite 500 South Bend, Indiana 46601 PHONE: 574.334.5460

- 1945 Rehab A: Replacement of some of the stone railing panels.
- 1977 Rehab: No A, B, C designation because it was a City of South Bend Contract. New bituminous surface and added a 2 ft. tall curb between sidewalk and travelway.
- 1997 Rehab: No A, B, C designation, revetment riprap was placed on upstream face of both piers.
- 2006 Rehab B: Added cofferdams around piers for scour protection, stone repair, and replacement of asphalt wearing surface with a concrete deck.
- 2012 Rehab C: Railing panel replacement (stone replaced with concrete), stone repair, epoxy injection of the transverse cracking, added a fiber reinforced polymer (FRP) to underside of arch for crack repair, patched construction joints between arch segments.

2018 Rehab D: Polymeric overlay placed on wearing surface.

- One of the primary concerns regarding the existing bridge is the deflection that is visually detectable at the upstream/east side of the center span. This deflection corresponds to a drop of two of the arch segments at the center span (Span B). The superstructure was constructed in six longitudinal arch segments, with a construction joint separating the segments. The two outer most east segments have vertically dropped on the north side of the Span B and the south side of Span C (northern most span). The maximum vertical drop occurs in Span B and is measured at approximately 3 inches.
- Lochmueller explained the theory and corresponding timeline as to why it is believed the deflection and arch segment drops have occurred. The below timeline is based on information that was available on INDOT's AssetWise database, and represents Lochmueller's educated estimation on the timeline of deterioration:
 - 1994: INDOT performed the 1st Underwater Inspection on the bridge and scour was discovered on the upstream face of Pier No. 3.
 - 1997: Riprap revetment was placed on the upstream faces of both piers for scour protection.
 - 1998: 3-inch arch segment drop was documented in the 1998 Routine Inspection Report.
 - 2003: 1-inch vertical crack in Pier No. 3 was documented in the 2003 Underwater Inspection Report. The vertical crack aligned with the same location as the arch segment drop. Scour and undermining at Pier No. 3 also progressed inward and was near the location of the vertical crack.
 - 2006: A cofferdam was added around the piers which consisted of sheet piling encased in concrete. There is concern that addition of the cofferdam resulted in additional settlement of the piers and overstress of the foundation. The cofferdam was doweled into the existing foundation and adds about 2000 kips of dead load to the foundation.
 - 2012: Epoxy injection and the addition of a fiber reinforced polymer (FRP) was performed to repair the extensive transverse cracking on each span of the arches. It is unclear when the cracks first started to propagate but it is believed the cracks worsened following the placement of the cofferdam at the piers.

- 2013: INDOT began doing an annual special inspection of the bridge to measure the differential in the arch segment drop.
- As illustrated by the figure below, it is believed that the undermining and scour at the upstream side of Pier No. 3, caused the pier to settle. This settlement corresponds to the drop in the arch segments in the pier. There has been little change in the differential of the arch segment drops since beginning the annual special inspections in 2013.

Arch Drop and Deflection Theory

2. Findings from Non-Destructive Testing (NDT)

- Terracon provided an overview of the non-destructive testing (NDT) that was performed on the bridge, as part of this project. Terracon performed infrared thermography (IR), ground penetrating radar (GPR), and an impact echo (IE) to assess the condition of the concrete arch. Cores were also taken at the arch, pier foundations, spandrel walls, and bridge railings.
- The NDT primarily noted deterioration on the downstream side of the Span B arch. The other spans noted minimal deterioration from honeycombing or delamination, especially compared to the NDT that was performed by Earth Exploration in 2011. The cores from the arch were generally in good condition, and the fracture in one of the arch cores is believed to be from the coring process. The core from the foundation at Pier No. 3 did not indicate any scour at the location that it was obtained.

3. Findings from In-Depth Field Inspection

- Lochmueller performed an In-Depth Field Inspection on November 18th and 19th, 2020 in order to visually inspect the underside of the arches, cofferdams, stone spandrel wall, bridge railing, and the wearing surface. The purpose of the inspection was to assess the condition of the bridge, to review the known existing deterioration, and to confirm if any of the deterioration had worsened.
- Cracking in the cofferdam was noted, most predominantly on the upstream faces of the piers. Lochmueller talked with Bill Dittrich at INDOT, who had performed several of the routine and special inspections on the structure. Bill indicated that he noted several occasions where he observed water shooting up from the cracks (3-5 inches) at the upstream face of Pier No. 3 and he believes this could indicate some pressure build-up beneath the cofferdam. Lochmueller also pointed out that the sheet piling for the cofferdam was installed 10-12 feet below the flowline of the channel (due to the low clearance with the existing arches) and the scour depth for a Q100 storm is approximately 18.5 feet below the flowline according to the 2003 INDOT Hydraulic Scour

Memo. The Foundation Assessment and NDT that was performed by Earth Explorations in 2002, indicate that the foundation is supported on timber piles (estimated 15 feet length).

- The fiber reinforced polymer (FRP), that was added to the underside of the arch in the 2012 rehabilitation, is in generally good condition. There are few locations where the strips have peeled off or air bubbles have developed, indicating a lack of adhesion. Lochmueller did not detect any of the existing transverse cracks at the locations between the FRP strips. Overall, the arches appeared to be in good condition, with the exception of the downstream/west side of Span B. This was consistent with the findings of the NDT, that noted deterioration primarily at this area. At this location, there was rust staining, efflorescence, and several patch areas along the arch ring blocks.
- The bridge inspection reports had indicated that the arch had a "melan" type reinforcing system. A melan arch design employs parallel beams or small steel trusses embedded in the concrete to provide the tensile strength that concrete inherently is lacking. The GPR test from the NDT only found evidence of standard rebar in the arch. Lochmueller also talked to Bill Dittrich, who performed many of the inspections, regarding the melan arch designation. He said that it was originally believed to be a melan arch but throughout the years of inspection and rehabilitation, no evidence was found to support this. The group also did not have any historical documentation or evidence to support the theory that the structure was a melan arch. Lochmueller will proceed with the assumption that the arch was constructed with traditional rebar reinforcing.
- Lochmueller performed a visual inspection of each stone on the spandrel wall. From the geological classification performed by Terracon, the stone in the spandrel wall is limestone. Deficiencies including cracks, spalls, and erosion were identified in the field notes. A preliminary assessment of which stones could be re-used, replaced, and repaired was performed and designated in the notes. Overall, the limestone was in fair condition and it is believed less than 20 percent of the stones would need to be replaced. It is also recommended that the stones be cleaned, and mortar joints re-pointed.
- Cores of the spandrel wall were taken in 2011. From these cores, the spandrel wall consists of an
 outside stone façade (approximately 0.5 feet thick) and a concrete wall (approximately 1.5 feet
 thick). The two spandrel wall cores revealed concrete crumbling at those locations.
- The wearing surface consists of a 6-inch concrete deck with a polymeric overlay placed in 2018.
 The wearing surface is in fair condition, and widely spaced transverse cracks were noted.
- The historic railing consists of concrete railing panels (originally stone and replaced with concrete in 2012), and limestone pilasters. There is an exception to this in the southeast quadrant, where there are two panels of stone railing. It is believed that the limestone pilasters are mostly original, though some have been replaced. The pilasters show evidence of erosion, likely due to their age.
- There is a concrete barrier curb separating the sidewalk and travelway on both sides of the bridge. This was originally placed by the City of South Bend in 1977 and replaced in the 2006 rehabilitation. No impacts to the barrier curb were noted; however, there was vertical cracking noted throughout.

With no original plans available for the construction of the bridge, the load rating was based on "engineering judgement" based on field observation of the deterioration and performance under routine traffic. The HS-20 Inventory Rating Factor was reduced to 0.809 due to the observed deterioration and segment drop of the arch. Based on the load rating, the bridge is sufficient to carry routine legal loads, but overweight permits are restricted.

4. Project Purpose and Need

- In accordance with INDOT's project development process for historic bridges, Lochmueller stressed the importance of determining the purpose and need for the project before developing the proposed alternatives. Mary pointed out that part of the purpose for historic bridges is maintaining a safe crossing for a minimum of 25 years. Mark also emphasized that INDOT has performed several repairs and inspections, and the goal of this project would be to develop a long-term solution. A secondary goal of the project would be to explore the option of relinquishing the bridge to the County, and INDOT understood in order to do this the bridge would need to be in good condition.
- Mary suggested developing the purpose and need and sending to INDOT for review/input. Lochmueller will prepare the purpose and need statement for INDOT to review. With the purpose and need, Lochmueller will also develop preliminary alternatives that describe generally what the proposed scope will be. This will be followed up with an additional scoping meeting to discuss the alternatives.
- Mary noted that the Historic Preservation Commission of South Bend would also be a Consulting Party for this project. The project would also require a Certificate of Appropriateness with approval from the Historic Preservation Commission of South Bend.

5. <u>General Scope Discussion Items</u>

- As part of the rehabilitation, the group agreed that the presumed overloading of the foundation due to the placement of the cofferdam will need to be addressed as part of this project. Troy suggested the potential to strengthen the foundation with micropiles. The other alternative would be to replace both pier foundations, which would require an extensive rehabilitation.
- The group was in concurrence that the condition of the concrete spandrel wall will need to be addressed, as the cores indicated the wall was crumbling. Replacement of the concrete spandrel wall would require removal and replacement/re-construction of arch fill, bridge deck, historic railing, barrier curb, and stone spandrel wall.
- Bridge lighting, sitting on some of the pilasters, was added to the bridge in 2006 and was a replication of the original lighting that no longer existed. It was confirmed following the meeting, the bridge lighting is in working order. Regardless of the scope of work, the lights will be returned to a functioning condition.
- It was discussed if a crashworthy railing should be placed in between the sidewalk and barrier rail as part of this project. Lochmueller noted that no evidence of impact was found on the existing barrier curb and they were awaiting crash information at the location. If the crash data does not reveal any issues, then the barrier curb will likely be replaced in-kind.

Maintenance of traffic for the project was discussed. Steve had mentioned that when the 2012 rehab was performed, Notre Dame was adamant that four lanes of traffic be open at this crossing during football season. The route and bridge are heavily trafficked and there are few options in the way of an alternative crossing/route. INDOT believed it would be difficult to get the support to close the structure during construction. Katlyn did caution the group, that depending on the scope of work, it could become very challenging and expensive to phase the construction of the project. Temporary retaining walls would need to be constructed to retain the arch fill. On a similar project, Katlyn stated the maintenance of traffic cost to phase construction of an arch bridge was about \$1 million. In the HBAA Report, for each alternative, Lochmueller will provide estimates for a full closure as well as phased construction for INDOT to make a decision. INDOT also suggested aligning the letting in fall/early winter so that the Contractor could start as soon as the weather allows and stop work in time for Notre Dame football season. The maintenance of traffic scheme will require coordination with Alen Holderread and Adam Parkhouse at the District.

6. Project Name

Lochmueller has developed a public involvement plan for the project that includes website development, social media posts, stakeholder meetings, a public information meeting, public hearing, and consulting party meetings. Being that this will be a high-profile project due to its proximity to downtown South Bend and Notre Dame, and the historical significance of the bridge, the design team highlighted the importance of utilizing a consistent name for the project. The "project name" will be utilized in communications with the public and internally with the design team to establish a consistent branded project. Lochmueller had two suggestions for the project name: "Leeper Historic Bridge Project" and "Michigan St. Historic Bridge Project". Steve, who is a local resident to the South Bend area, said the bridge is typically referred to as the "Leeper Park Michigan St. Bridge". INDOT suggested to utilize this name because it resonates with the local residents. Katlyn to coordinate with Adam Parkhouse at the District regarding the name, for official concurrence.

7. <u>Next Steps</u>

- Week of 2/1 Lochmueller to develop the Purpose and Need Statement for the project and send to INDOT for review. Lochmueller to also provide concise descriptions of the proposed alternatives that align with the purpose and need.
- February 2021 Lochmueller to schedule a meeting with the same attendees to discuss the purpose and need, and the proposed scope of work for the project.
- February 2021 Lochmueller to schedule and host an Initial Stakeholder Meeting to provide an introduction to the project.
- March 2021 Lochmueller to schedule and host an Initial Consulting Party Meeting to discuss the proposed alternatives and to solicit feedback.
- May 2021 Lochmueller to submit the DRAFT HBAA Report to INDOT.

MEETING MINUTES

Meeting:	Virtual Scoping Meeting	
Prepared By:	Katlyn Shergalis, PE Structural Team Leader	
Date:	Thursday, February 25, 2021 - 1	1:00 – 2:30PM CST
Project:	Contract B-42441 DES #1900011 – Leeper Park M	lichigan St. Bridge
Location:	Virtual – Microsoft Teams	
Attendees:	John Krueckeberg, PMP Mark Pittman, PE, MBA Steven Hauersperger Ashley Sharkey Stewart Michels Steven Travis Martha Chernet, PE Mahmoud Hailat, PE Gregory Klevitsky, PE Mary Kennedy Troy Jessop, PE Scott Zajac, PE Ruth Hook, CPESC, CESSWI Jessica Clark, PE Brian Arterbery, PE Gary Quigg, MA, RPA Susan Al Abbas, PE Daniel Cooper, EIT Michael Vereb, PE	INDOT LaPorte District – jkrueckeberg@indot.in.gov INDOT LaPorte District – mapittman@indot.in.gov INDOT LaPorte District – shauersperger@indot.in.gov INDOT LaPorte District – assharkey@indot.in.gov INDOT LaPorte District – smichels@indot.in.gov INDOT LaPorte District – stravis2@indot.in.gov INDOT Central Office – mchernet@indot.in.gov INDOT Central Office – mhailat@indot.in.gov INDOT Central Office – gklevitsky@indot.in.gov INDOT Central Office – gklevitsky@indot.in.gov INDOT Central Office – mkennedy@indot.in.gov GAI Consultants – t.jessop@gaiconsultants.com Terracon Consultants, Inc. – scott.zajac@terracon.com Lochmueller Group – iclark@lochgroup.com Lochmueller Group – barterbery@lochgroup.com Lochmueller Group – salabbas@lochgroup.com Lochmueller Group – salabbas@lochgroup.com Lochmueller Group – dcooper@lochgroup.com Lochmueller Group – mvereb@lochgroup.com
	•	

Purpose: The purpose of this meeting was to discuss the proposed scope of work for the project and to develop consensus on the HBAA Report alternatives.

Discussion and/or Comments:

1. Update from Last Meeting

The first scoping meeting for the project was held on January 27, 2021. The meeting focused on discussing the existing condition of the bridge, results of the Non-Destructive Testing (NDT), findings from the In-Depth Field Inspection, areas of and the history of deterioration, and a general discussion of the project scope. Following that meeting, Lochmueller developed the purpose and need statement for the project, as well as a draft version of the project alternatives.

112 West Jefferson Blvd, Suite 500 South Bend, Indiana 46601 PHONE: 574.334.5460

- The draft version of the purpose and need statement, and draft alternatives were sent to the meeting participants as well as the Central Office NEPA staff for review and comment. The document is attached to these meeting minutes. The Central Office NEPA staff had no comments on the purpose and need. Various comments were received from INDOT staff related to the scope of work, these comments were incorporated into the agenda and discussion for this meeting and are described below.
- The purpose statement was made more concise from the direction of Paul South, the Scoping Manager in LaPorte District. Mary suggested that the information related to improving the condition rating should remain in the purpose statement, as it is an important benchmark, and since NEPA staff had no comments on the previous version. The purpose statement has been revised to reflect this comment.

2. Scoping Discussion

- Katlyn reviewed the draft alternatives with the group. The draft alternatives are attached to the meeting minutes. In terms of general concept, the two alternatives are a minor and major rehabilitation. Mary pointed out that if the major rehabilitation was the preferred alternative then justification would be required for the more intrusive alternative. A clarification was provided regarding the replacement of damaged stones in the spandrel wall. These stones would be replaced with limestone intended to replicate the existing.
- Greg suggested removing the thickness of the concrete slab from the alternatives since it has not been designed yet.
- The minor rehabilitation would include strengthening the foundations to add additional capacity equivalent to the dead load of the cofferdam that was added to the structure in 2006. The major rehabilitation would include a complete foundation replacement, including the abutments. Troy discussed two methods that would be explored regarding strengthening the foundations with micropiles. Option 1 would entail driving the micropiles from the top of the bridge deck and through the cofferdam. Option 2 would entail driving micropiles below the arch and outside of the existing cofferdam footprint. Concrete would be placed around the cofferdam and tied into the existing cofferdam. A question was asked regarding the environmental impacts of strengthening the foundation. Troy explained that it would be no different than a traditional foundation replacement in terms of environmental impacts.
- The idea of constructing a beam superstructure within the arch fill to carry most of the bridge's live load was discussed. Lochmueller reviewed the cores that Terracon performed at the crown of the arch. Based on these cores, there is approximately 28 inches of cover from the top of the arch to the top of the bridge deck. The team discussed that the only feasible superstructure type that could span the arch and have a depth of 28 inches or less was a post-tensioned beam system. The team decided this was not feasible from a constructability or cost perspective.
- Lochmueller suggested the idea of utilizing lightweight arch fill in lieu of typical stone that would be used. The intent of this method would be to reduce the dead load to the foundation and in turn reducing the amount that the foundation would need to be strengthened. Lochmueller proposed the idea of utilizing geofoam, which is a material that has been used to construct roadway embankments. For a roadway application, the geofoam is used in order to reduce the dead load acting on the subgrade which reduces settlement. This approach will be further investigated and discussed throughout the project development process.

- Mark had heard concerns from the City of South Bend that it was difficult to find replacement parts and light bulbs for the decorative lighting on the bridge. The City of South Bend is a stakeholder for the project, and Lochmueller will engage with the City to understand these challenges and to potentially mitigate them as part of this project. The intent of the project would be to retain the replicated decorative lighting, but they would potentially be modernized or rewired.
- The idea of converting a portion of the structure to a pedestrian bridge by removing the eastern half of the existing bridge and re-building the east spandrel wall was proposed in another firm's proposal. A new bridge would be constructed adjacent to the reduced width pedestrian bridge. This idea was discarded due to not meeting the purpose and need of the project, and it would likely cause right of way impacts to the 6(f) property of Leeper Park to the south and the historic neighborhood to the north.
- The existing sidewalk on the east side of the bridge is approximately 3'-4" wide and does not meet ADA criteria. A Level One Design exception cannot be obtained for the width of the sidewalk due to the requirement of meeting ADA criteria. Lochmueller will investigate an appropriate method for meeting ADA criteria, and will coordinate with the City regarding the sidewalk. Additionally, consideration will be made for making this a secondary "need" for the project.
- Lochmueller re-emphasized the approach for maintenance of traffic. In the HBAA Report, Lochmueller to develop costs for each alternative for phased construction and a full closure with detour route. Considerations for pedestrian maintenance of traffic will also be discussed in the Report.

3. <u>Next Steps</u>

- Ruth provided an update on the public involvement for the project. The logo and website for the project are under development. Coordination will also begin related to scheduling the first stakeholders meeting.
- Lochmueller had asked for concurrence from INDOT in regards to the proposed draft alternatives to confirm that the project was headed in the intended direction. INDOT concurred with the proposed draft alternatives and Lochmueller will work towards submitting the Draft HBAA Report by May 15, 2021.

Section 4(f) Historic Bridge Alternatives Analysis

Leeper Park Michigan St. Bridge INDOT Des. No.: 1900011

PURPOSE AND NEED

The need for the Leeper Park Michigan St. Bridge project derives from the condition of the existing bridge. According to the 2019 INDOT Bridge Inspection Report, the current ratings for the superstructure and the substructure are fair (5 out of 9). Condition ratings range from 0 to 9, with 0 indicated a failed structure and 9 indicating a new structure with no deficiencies. The scour that was discovered in the 2003 Underwater Inspection Report performed by Collins Engineers, has caused the upstream portion of the Pier 3 foundation (the northern most pier) to settle. This settlement has caused the arches supporting the middle and north spans of the bridge to sag or deflect. Earth Exploration obtained cores of the existing spandrel wall in 2011, that noted crumbling of the concrete portion of the spandrel wall.

The need also derives from the load carrying capacity of the existing foundations. In 2006, as a method to mitigate future scour at both pier foundations, cofferdams were constructed and were designed and built to be integral with the existing foundations. While the cofferdams helped to prevent further scour, they increased the loading of the piles beneath Pier 2 and 3's foundation by approximately an additional 2000 kips (1 kip is equivalent to 1000 lbs.). The original structure was not designed to carry the additional 2000 kips of deadload; and there is concern the foundations are now overloaded. The overloading of the foundational settlement of the piers, which would correlate to additional stress in the arches and subsequent transverse cracking that was repaired in 2012. With no repairs or work performed on the structure, it is believed the estimated remaining life of the bridge is approximately 10 years.

The purpose of the project is to maintain a vehicular and pedestrian crossing of the St. Joseph River for the City of South Bend. This project will extend the life of this crossing for a minimum of 25 years. The project should address the condition of the bridge's superstructure and substructure and raise both the superstructure and substructure's rating to at least good (7 out of 9.). The project should also improve the load carrying capacity of the foundation by at least 2000 kips to secure the future safety and preservation of the structure.

A. No Build/Do Nothing

B1a. Rehabilitation for Continued Vehicular Use (two-lane or one-lane option) Meeting Secretary of Interior's Standards for Rehabilitation

- Remove existing bridge deck, historic railing, spandrel wall, barrier curb, arch fill, outer east two segments of arch in Span B and C.
- Strengthen foundations, look at using micro-piles.
- Re-construct the outer east two arch segments in Span B and C.
- Apply waterproofing membrane to the top of the arch.
- Construct a new concrete spandrel wall.
- Re-set existing limestone stone in spandrel wall that is in good condition. Repair or replace limestone that is in poor condition.
- Place new arch fill, No. 8 stone.
- Place a new concrete bridge deck.
- Construct new historic railing panels utilizing concrete.
- Re-use limestone pilasters that are in good condition. Replace limestone that is in poor condition.
- Re-construct concrete barrier curb and sidewalk, in-kind.

B1b. <u>Rehabilitation for Continued Vehicular Use (two-lane or one-lane option) Meeting Secretary of</u> <u>Interior's Standards for Rehabilitation</u>

Section 4(f) Historic Bridge Alternatives Analysis

Leeper Park Michigan St. Bridge INDOT Des. No.: 1900011

- Remove existing bridge deck, historic railing, spandrel wall, barrier curb, arch fill, arches, and foundations.
- Replace foundations. Concrete pedestals on deep pile foundations.
- Re-construct the concrete arches.
- Apply waterproofing membrane to the top of the arch.
- Construct a new concrete spandrel wall.
- Re-set existing limestone stone in spandrel wall that is in good condition. Repair or replace limestone that is in poor condition.
- Place new arch fill, No. 8 stone.
- Place a new concrete bridge deck.
- Construct new historic railing panels utilizing concrete.
- Re-use limestone pilasters that are in good condition. Replace limestone that is in poor condition.
- Re-construct concrete barrier curb and sidewalk, in-kind.

Appendix H: HDOT 34" Tall Aesthetic Concrete Bridge Rail

1200 New Jersey Ave., SE Washington, D.C. 20590

In Reply Refer To: HSST-1/B-345

Mr. James Fu State of Hawaii, Department of Transportation 601 Kamokila Boulevard, Room 611 Kapolei, HI 96707 USA

Dear Mr. Fu:

This letter is in response to your March 31, 2020 request for the Federal Highway Administration (FHWA) to review a roadside safety device, hardware, or system for eligibility for reimbursement under the Federal-aid highway program. This FHWA letter of eligibility is assigned FHWA control number B-345 and is valid until a subsequent letter is issued by FHWA that expressly references this device.

Decision

The following device is eligible within the length-of-need, with details provided in the form which is attached as an integral part of this letter:

• HDOT 34" Tall Aesthetic Concrete Bridge Rail

Scope of this Letter

To be found eligible for Federal-aid funding, new roadside safety devices should meet the crash test and evaluation criteria contained in the American Association of State Highway and Transportation Officials'(AASHTO) Manual for Assessing Safety Hardware (MASH). However, the FHWA, the Department of Transportation, and the United States Government do not regulate the manufacture of roadside safety devices. Eligibility for reimbursement under the Federal-aid highway program does not establish approval, certification or endorsement of the device for any particular purpose or use.

This letter is not a determination by the FHWA, the Department of Transportation, or the United States Government that a vehicle crash involving the device will result in any particular outcome, nor is it a guarantee of the in-service performance of this device. Proper manufacturing, installation, and maintenance are required in order for this device to function as tested.

This finding of eligibility is limited to the crashworthiness of the system and does not cover other structural features, nor conformity with the Manual on Uniform Traffic Control Devices.

Eligibility for Reimbursement

Based solely on a review of crash test results and certifications submitted by the manufacturer, and the crash test laboratory, FHWA agrees that the device described herein meets the crash test and evaluation criteria of the AASHTO's MASH. Therefore, the device is eligible for reimbursement under the Federal-aid highway program if installed under the range of tested conditions.

Name of system: HDOT 34" Tall Aesthetic Concrete Bridge Rail Type of system: Longitudinal Barrier Test Level: MASH Test Level 3 (TL 3) Testing conducted by: Midwest Roadside Safety Facility Date of request: March 31, 2020

FHWA concurs with the recommendation of the accredited crash testing laboratory on the attached form

Full Description of the Eligible Device

The device and supporting documentation, including reports of the crash tests or other testing done, videos of any crash testing, and/or drawings of the device, are described in the attached form.

Notice

This eligibility letter is issued for the subject device as tested. Modifications made to the device are not covered by this letter. Any modifications to this device should be submitted to the user (i.e., state DOT) as per their requirements.

You are expected to supply potential users with sufficient information on design, installation and maintenance requirements to ensure proper performance.

You are expected to certify to potential users that the hardware furnished has the same chemistry, mechanical properties, and geometry as that submitted for review, and that it will meet the test and evaluation criteria of AASHTO's MASH.

Issuance of this letter does not convey property rights of any sort or any exclusive privilege. This letter is based on the premise that information and reports submitted by you are accurate and correct. We reserve the right to modify or revoke this letter if: (1) there are any inaccuracies in the information submitted in support of your request for this letter, (2) the qualification testing was flawed, (3) in-service performance or other information reveals safety problems, (4) the system is significantly different from the version that was crash tested, or (5) any other information indicates that the letter was issued in error or otherwise does not reflect full and complete information about the crashworthiness of the system.

Standard Provisions

- To prevent misunderstanding by others, this letter of eligibility designated as FHWA control number B-345 shall not be reproduced except in full. This letter and the test documentation upon which it is based are public information. All such letters and documentation may be reviewed upon request.
- This letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented system for which the applicant is not the patent holder.
- This FHWA eligibility letter is not an expression of any Agency view, position, or determination of validity, scope, or ownership of any intellectual property rights to a specific device or design. Further, this letter does not impute any distribution or licensing rights to the requester. This FHWA eligibility letter determination is made based solely on the crash-testing information submitted by the requester. The FHWA reserves the right to review and revoke an earlier eligibility determination after receipt of subsequent information related to crash testing.
- If the subject device is a patented product it may be considered to be proprietary. If proprietary systems are specified by a highway agency for use on Federal-aid projects: (a) they must be supplied through competitive bidding with equally suitable unpatented items; (b) the highway agency must certify that they are essential for synchronization with the existing highway facilities or that no equally suitable alternative exists; or (c) they must be used for research or for a distinctive type of construction on relatively short sections of road for experimental purposes. Our regulations concerning proprietary products are contained in Title 23, Code of Federal Regulations, Section 635.411.

Sincerely,

Michael & Juffith

Michael S. Griffith Director, Office of Safety Technologies Office of Safety

Enclosures

Version 10.0 (05/16) Page 1 of 5

Request for Federal Aid Reimbursement Eligibility of Highway Safety Hardware

	Date of Request:	March 31, 2020	New	○ Resubmission	
	Name:	James Fu, S.E.			
tter	Company:	State of Hawaii, Department of Transportation			
Submitter	Address:	601 Kamokila Boulevard, Room 611, Kapolei, HI 96707			
Sut	Country:	USA			
	To: Michael S. Griffith, Director FHWA, Office of Safety Technologies				

I request the following devices be considered eligible for reimbursement under the Federal-aid highway program.

Device & Testing Criterion - Enter from right to left starting with Test Level

System Type	Submission Type	Device Name / Variant	Testing Criterion	Test Level
'B': Rigid/Semi-Rigid Barriers (Roadside, Median, Bridge Railings)		HDOT 34'' Tall Aesthetic Concrete Bridge Rail	AASHTO MASH	TL3

By submitting this request for review and evaluation by the Federal Highway Administration, I certify that the product(s) was (were) tested in conformity with the AASHTO Manual for Assessing Safety Hardware and that the evaluation results meet the appropriate evaluation criteria in the MASH.

Individual or Organization responsible for the product:

Contact Name:	James Fu, S.E.	Same as Submitter 🛛		
Company Name:	State of Hawaii, Department of Transportation	Same as Submitter 🔀		
Address:	601 Kamokila Boulevard, Room 611, Kapolei, HI 96707	Same as Submitter 🔀		
Country:	USA	Same as Submitter 🔀		
	isclosures of financial interests as required by the FHWA `I 5 for Safety Hardware Devices' document.	Federal-Aid Reimbursement		
The Midwest Roadside Safety Facility (MwRSF) and its employees were asked to perform crash testing and evaluate the device named herein for the Hawaii Department of Transportation.				
MwRSF's financial interests are as follows: (i) No compensation, including wages, salaries, commissions, professional fees, or fees for business referrals; (ii) Consulting relationships consist of answering design and implementation questions; (iii) Research funding or other forms of research support include continued funding for roadside safety research projects with MwRSF; (iv) No patents, copyrights, or other intellectual property interests for this system; (v) No licenses or contractual relationships for this system; and (vi) No business ownership and investment interests for this system.				

PRODUCT DESCRIPTION

New Hardware or	Modification to
• Significant Modification	^C Existing Hardware
Significant Woolfication	Existing Hardware

The Hawaii Department of Transportation (HDOT) 34-in. tall aesthetic concrete bridge rail contained five concrete barrier segments consisting of two 11-ft long end segments and three 22-ft long interior barrier segments. The bridge rail was 34 in. tall relative to the traffic-side tarmac and 10 in. wide at the top and the bottom. The top surface had ¼-in. chamfered edges. Recessed aesthetic lines, ½-in. deep, were located 7 in. below the top surface and 9 in. above the bottom surface on the traffic- and back-side faces. The main aesthetic feature on this concrete bridge rail was 60-in. wide x 15-in. tall x ½-in. deep recessed panels on both the traffic-side and back-side faces. The edges of the panels transitioned to the face of the rail using 2H:1V slope. The concrete mix for the bridge rail sections required a minimum 28-day compressive strength of 4,000 psi.

Steel reinforcement in the barrier consisted of ASTM A615 Grade 60 rebar. Each concrete bridge rail segment consisted of eight no. 5 longitudinal bars (four per face) that were vertically spaced 10 in. apart. Vertical stirrups were also provided using no. 5 rebar, which were spaced on 12-in. centers on the back-side face and on 6-in. centers on the traffic-side face. Vertical reinforcement bars were anchored to an existing concrete tarmac on both the traffic-side and back-side faces to a depth of 8 in. and epoxied with Hilti HIT RE-500 V3 in order to develop the full tensile strength of the bar. The minimum bond strength of the epoxy adhesive was 1,560 psi after a two-day cure.

The existing concrete tarmac surface was milled to a depth of 2 in. and filled with low-strength concrete after removal of the formwork to replicate the wearing surface of a bridge deck. Each barrier segment was separated by an expansion joint consisting of a ½-in. open gap that was filled with expansion joint sealant. The expansion joint assembly consisted of three 24-in. long no. 8 horizontal smooth rebar placed within PVC tubes and caps that were cast into the parapet.

Note, HDOT's 34-in. tall, Aesthetic Concrete Bridge Rail was fabricated for evaluation of the length of need (LON) of the interior barrier segments of the bridge rail. Therefore, the crashworthiness of the end segments and the transition buttresses were not evaluated in this testing program. It is recommended that end sections and buttresses be designed with similar or greater capacity to the bridge rail. Further, reducing the spacing of the vertical reinforcement near the end sections of the barrier could potentially mitigate some of the cracking and damage that was observed in the full-scale crash tests and reduce the need for repair of the bridge rail.

CRASH TESTING

By signature below, the Engineer affiliated with the testing laboratory, agrees in support of this submission that all of the critical and relevant crash tests for this device listed above were conducted to meet the MASH test criteria. The Engineer has determined that no other crash tests are necessary to determine the device meets the MASH criteria.

Engineer Name:	Ponald Fallerd K Eallor		
Engineer Signature:		ou=Midwest Roadside Sa Digitally signed by Ronald DN: cn=Ronald K. Faller, o Date: 2020.04.17 08:52:2	fety Facility, email=rfaller1@unl.edu, c=US K. Faller =University ofNebraska-Lincoln, 0 -05'00'
Address:	130 Whittier Research Center, 2200 Vine Lincoln, NE 68583-0853	e Street,	Same as Submitter
Country:	USA to tast and its result:		Same as Submitter 🗌

A brief description of each crash test and its result:

Version 10.0 (05/16) Page 3 of 5

		Page 3 of 5
Required Test Number	Narrative Description	Evaluation Results
3-10 (1100C)	Lab test no.: H34BR-1 Date of test: April 17, 2019 Crash test report no.: TRP-03-420-19 A 2,430-lb small car with a simulated occupant seated in the front passenger seat, impacted the concrete bridge rail 42 9/16- in. upstream from the expansion joint between barrier nos. 3 and 4 at a speed of 62.4 mph and at an angle of 25.7 degrees, resulting in a lateral impact force of 58.8 kips and an impact severity of 59.2 kip-ft. At 0.160 sec after impact, the vehicle became parallel to the system with a speed of 50.9 mph. At 0.290 sec, the vehicle exited the system at a speed of 43.0 mph and angle of 6.9 degrees. The vehicle was successfully redirected. Exterior vehicle damage was moderate and the interior occupant compartment deformations were minor with a maximum deformation of 1.9 in., consequently not violating the limits established in MASH 2016. Damage to the concrete bridge rail was minor, consisting of minor cracks and spalling of the concrete in several locations. The maximum lateral permanent set of the barrier system was 0.2 in. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top of the surface, was 0.3 in. at the upstream end of barrier no. 3. The working width of the system was 10.3 inches. There was no potential for the barrier to intrude into the occupant compartment. All vehicle decelerations, occupant compartment deformations, the maximum angular displacements, occupant ridedown accelerations (ORAs), and occupant impact velocities (OIVs) fell within the recommended safety limits established in MASH 2016. The test vehicle showed no tendency for rollover and did not penetrate or ride over the barrier.	PASS

Version 10.0 (05/16) Page 4 of 5

		Page 4 of 5
Required Test Number	Narrative Description	Evaluation Results
3-11 (2270P)	Lab test no. H34BR-2 Date of test April 29, 2019 Crash test report no. TRP-03-420-19 A 5,001-lb pickup truck with a simulated occupant seated in the front passenger seat, impacted the concrete bridge rail 51 15/16 in. upstream from the expansion joint between barrier nos. 2 and 3 at a speed of 64.0 mph at an angle of 25.4 degrees, resulting in a lateral impact force of 88.6 kips and an impact severity of 126.4 kip-ft. At 0.192 sec after impact, the vehicle became parallel to the system with a speed of 50.9 mph. At 0.408 sec, the vehicle exited the system at a speed of 44.0 mph and an angle of 8.9 degrees. The vehicle was successfully redirected. Exterior vehicle damage was moderate and the interior occupant compartment deformations were moderate, with a maximum deformation of 5.4 in., consequently not violating the limits established in MASH 2016. Damage to the barrier was minimal, consisting of tire and scuff marks and concrete spalling and cracking. The maximum lateral permanent set of the barrier system was 0.1 in., including barrier and deck panel shift. The maximum lateral dynamic barrier along the top surface was 0.2 in. at the upstream end of barrier no. 3. The working width of the system was 17.2 inches. There was no potential for the barrier to intrude into the occupant compartment. All vehicle decelerations, occupant ridedown accelerations (ORAs), and occupant impact velocities (OIVs) fell within the recommended safety limits established in MASH 2016. The test vehicle showed no tendency for rollover and did not penetrate or ride over the barrier.	PASS
3-20 (1100C)	Test no. 3-20 is not applicable for this type of system.	Non-Relevant Test, not conducted
3-21 (2270P)	Test no. 3-21 is not applicable for this type of system.	Non-Relevant Test, not conducted

Full Scale Crash Testing was done in compliance with MASH by the following accredited crash test laboratory (cite the laboratory's accreditation status as noted in the crash test reports.):

Page 5 of 5

Laboratory Name:	Midwest Roadside Safety Facility	
Laboratory Signature:	Karia Lechtenberg	z, o=MwRSF, ou, email=kpolivka2@unl.edu, c=US Lechtenberg -05'00'
Address:	30 Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0853	Same as Submitter 🗌
Country:	USA	Same as Submitter
INTIMPER 200 LISTER OF CURRENT	A2LA Certificate Number: 2937.01, Valid to November valid to November 30, 2021)	30, 2019 (Currently,

Submitter Signature*: Submit Form

ATTACHMENTS

Attach to this form:

1) Additional disclosures of related financial interest as indicated above.

- 2) A copy of the full test report, video, and a Test Data Summary Sheet for each test conducted in support of this request.
- 3) A drawing or drawings of the device(s) that conform to the Task Force-13 Drawing Specifications [Hardware Guide Drawing Standards]. For proprietary products, a single isometric line drawing is usually acceptable to illustrate the product, with detailed specifications, intended use, and contact information provided on the reverse. Additional drawings (not in TF-13 format) showing details that are relevant to understanding the dimensions and performance of the device should also be submitted to facilitate our review.

FHWA Official Business Only:

Eligibility Letter		
Number	Date	Key Words

The second s		P C C C C C C C C C C C C C C C C C C C		The second se	Statement of the second s	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OWNER OF THE OWNER OWNE	
	a a s	a			1 total and	•	
0.000 sec	0.100 sec	0.200 sec		0.300	Sec → 10"[2	541 - 0.4	00 sec
0.000 500			, ,	0.500		J+] + 0.1	00 500
	1	THE			723 HØ	4757 64	
	23'-3" [7.1 m]				2	{	
1 2 1 3 4					hll		
25.7	HAA RF IF					0	
	LR LR L14'-11" [4.5 m]					34"[864]	
Test Agency Exit Box		MwRSF					
					/ p	a	
					} ∥		
MASH 2016 Test Designation N	ю						
Test Article	HDOT 34-in. Tall, Aesthetic Co	oncrete Bridge Rail		÷			
Total Length							
Key Component - Barrier Segme				7/		X//X	
e						X///	
1		•	Test Article Da	mage			Miı
Key Component – Barrier Segm							
	ant	•	Maximum Test	Article Deflection	15		
		•		Article Deflection	ns		
Length		• 11 ft	Permanent	Article Deflection			0
Length Depth		• 11 ft 	Permanent Dynamic Working W	Article Deflection Set			0
Length Depth Height		•	Permanent Dynamic	Article Deflection Set			0
Length Depth Height Type of Support Surface		•	Permanent Dynamic Working W Transducer Dat	Article Deflection Set //idtha	Trans		0 0 10
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model	Vertical rebar anchored to concrete t		Permanent Dynamic Working W Transducer Dat	Article Deflection Set	Trans SLICE-2		0 0
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb	Vertical rebar anchored to concrete t	•	Permanent Dynamic Working W Transducer Dat	Article Deflection Set Vidtha on Criteria	Trans SLICE-2 (primary)	ducer DTS	
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial	Vertical rebar anchored to concrete t	•	Permanent Dynamic Working W Transducer Dat Evaluatio	Article Deflection Set //idtha	Trans SLICE-2	ducer	
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static	Vertical rebar anchored to concrete t	•	Permanent Dynamic Working W Transducer Dat	Article Deflection Set Vidtha on Criteria	Trans SLICE-2 (primary)	ducer DTS	
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions	Vertical rebar anchored to concrete t	•	Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s)	Article Deflection Set /idth on Criteria Longitudinal Lateral	Trans SLICE-2 (primary) -23.41 -32.76	ducer DTS -25.16 -29.78	
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed	Vertical rebar anchored to concrete t	•	Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA	Article Deflection Set Vidth on Criteria Longitudinal Lateral Longitudinal	Trans SLICE-2 (primary) -23.41 -32.76 -4.11	ducer DTS -25.16 -29.78 -3.76	MASH 20 Limit ±40 ±20.49
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle	Vertical rebar anchored to concrete t	•	Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s)	Article Deflection Set /idth on Criteria Longitudinal Lateral	Trans SLICE-2 (primary) -23.41 -32.76	ducer DTS -25.16 -29.78	
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location	Vertical rebar anchored to concrete t 	•	Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX	Article Deflection Set Vidth on Criteria Longitudinal Lateral Longitudinal	Trans SLICE-2 (primary) -23.41 -32.76 -4.11	ducer DTS -25.16 -29.78 -3.76	MASH 20 Limit ±40 ±20.49
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location	Vertical rebar anchored to concrete t 200 200 3 in. upstream from the expansion joint, t 200 200 200 200 200 200 200 200 200 20	•	Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR	Article Deflection Set /idth on Criteria Longitudinal Lateral Longitudinal Lateral	Trans SLICE-2 (primary) -23.41 -32.76 -4.11 -10.63	ducer DTS -25.16 -29.78 -3.76 -12.92	MASH 20 Limit ±40 ±20.49 ±20.49
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location		•	Permanent Dynamic Working W Transducer Dat Evaluation OIV ft/s (m/s) ORA g's MAX ANGULAR DISP.	Article Deflection Set Vidth on Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch	Trans SLICE-2 (primary) -23.41 -32.76 -4.11 -10.63 5.7 -2.5	ducer DTS -25.16 -29.78 -3.76 -12.92 N/A N/A	MASH 20 Limit ±40 ±20.49 ±20.49 ±75 ±75
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Severity Exit Conditions Speed Angle	Vertical rebar anchored to concrete t 200 ; in. upstream from the expansion joint, t 59.2 kip-ft > 51 kip-ft limit	•	Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP. deg.	Article Deflection Set Vidth a on Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch Yaw	Trans SLICE-2 (primary) -23.41 -32.76 -4.11 -10.63 5.7 -2.5 -39.0	ducer DTS -25.16 -29.78 -3.76 -12.92 N/A	MASH 20 Limit ±40 ±20.49 ±20.49 ±75 ±75
Length Depth Height Type of Support Surface Anchor Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Severity Exit Conditions Speed Angle Exit Conditions Speed Angle	Vertical rebar anchored to concrete t 	•	Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP. deg.	Article Deflection Set Vidth on Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch	Trans SLICE-2 (primary) -23.41 -32.76 -4.11 -10.63 5.7 -2.5	ducer DTS -25.16 -29.78 -3.76 -12.92 N/A N/A	- MASH 20 Limit ±40 ±20.49 ±75 ±75 not requir
Length	Vertical rebar anchored to concrete t 	•	Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP. deg. THIV	Article Deflection Set /idth on Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch Yaw 7 – ft/s	Trans SLICE-2 (primary) -23.41 -32.76 -4.11 -10.63 5.7 -2.5 -39.0	ducer DTS -25.16 -29.78 -3.76 -12.92 N/A N/A N/A	- MASH 20 Limit ±40 ±20.49 ±20.49 ±75 ±75 not requir not requir
Length	Vertical rebar anchored to concrete t 	•	Permanent Dynamic Working W Transducer Dat Evaluation OIV ft/s (m/s) ORA g's MAX ANGULAR DISP. deg. THIV PHD	Article Deflection Set Vidth a on Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch Yaw	Trans SLICE-2 (primary) -23.41 -32.76 -4.11 -10.63 5.7 -2.5 -39.0 39.68	ducer DTS -25.16 -29.78 -3.76 -12.92 N/A N/A N/A N/A N/A	

Figure 47. Summary of Test Results and Sequential Photographs, Test No. H34BR-1

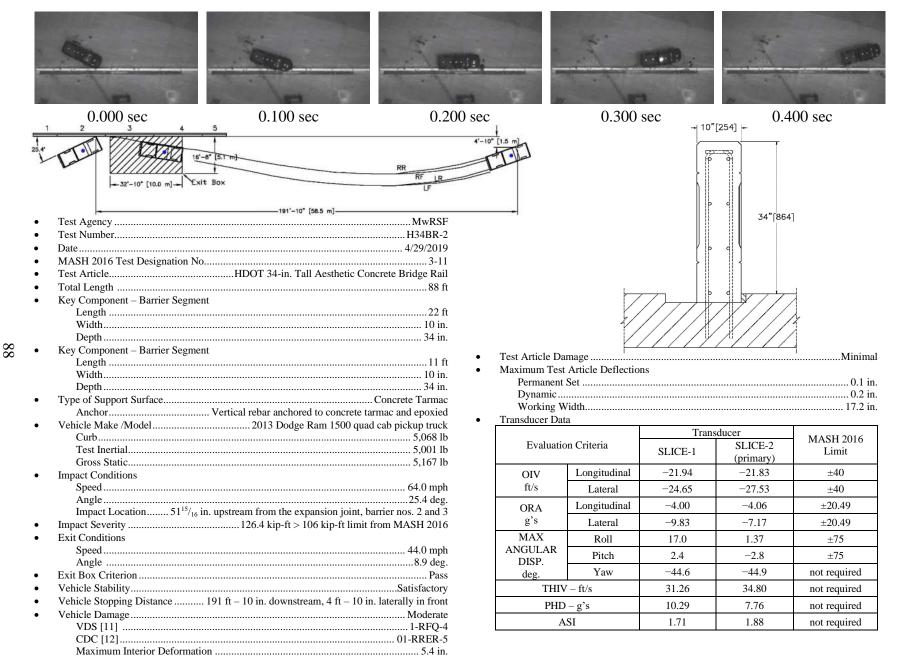
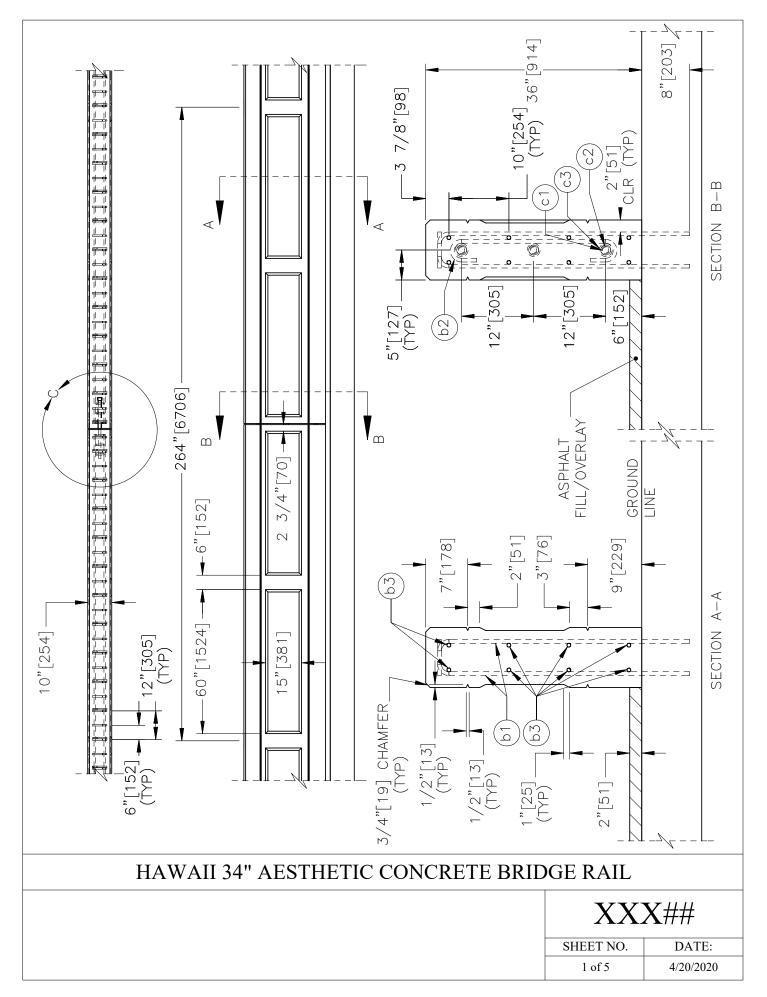



Figure 66. Summary of Test Results and Sequential Photographs, Test No. H34BR-2

INTENDED USE

The Hawaii 34" [864] Aesthetic Concrete Bridge Rail is non-proprietary concrete bridge rail that is anchored to a concrete bridge deck with a 2-in. [51] thick concrete or asphalt finishing surface applied on the traffic-side face of the bridge rail. This bridge rail has aesthetic recessed rectangular panels on the traffic-side and back-side surfaces. These aesthetic recessed panels measure 60 in. [1524] wide, 15 in. [381] tall, and $\frac{1}{2}$ [13] in. deep with an inclination angle of 45 degrees. Expansion joints using smooth dowels are typically located at 22-ft [6706] intervals in the bridge rail. End sections measuring 3 ft – 6 in. [1067] long are placed at the end of the bridge rail adjacent to an end buttress structure and should have similar or greater capacity as the bridge rail. The concrete used for the Hawaii 34" [864] Bridge rail should have a minimum nominal compressive strength of 4,000 psi [27.6 MPa]. The Hawaii 34" [864] Aesthetic Concrete Bridge Rail should be used in location where a maximum dynamic deflection of 0.3 in. [8] at the top of the barrier or less is acceptable and where a working width of 17.2 in. [438 mm] is provided. The Hawaii 34" [864] Aesthetic Concrete Bridge Rail should be used with the Modified Hawaii Thrie Beam Approach Guardrail Transition when transitioning to 31" [787] tall strong-post, W-beam guardrail such as Midwest Guardrail System (SGR20). The Hawaii 34" [864] Aesthetic Concrete Bridge Rail has been crash tested under Test Level 3 (TL-3) conditions and deemed crashworthy according to the Manual for Assessing Safety Hardware, Second Edition (MASH 2016) performance criteria.

COMPONENTS

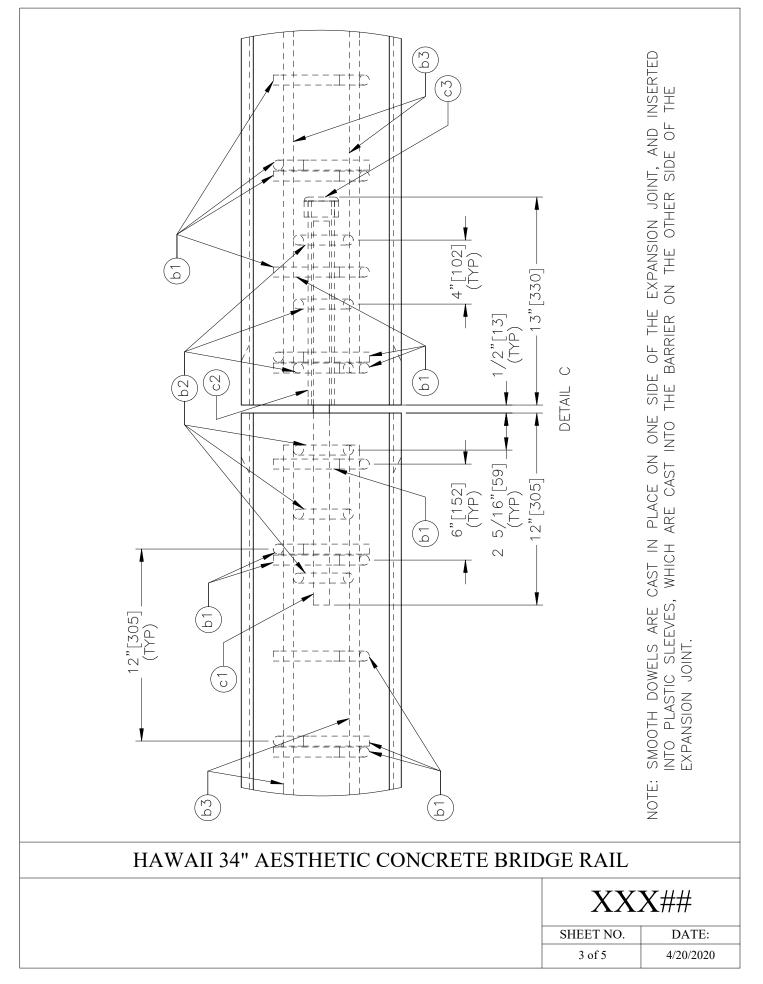
DESIGNATOR	COMPONENT	NUMBER	
c1	1" [25] Dia. Smooth 24" [610] Long Rebar	3	
c2	1 1/4" [32] Dia. PVC Pipe	3	
c3	1 1/4" [32] PVC Cap	3	
	Concrete, Minimum 4,000 psi f'c	-	
	See Bill of Bars	-	

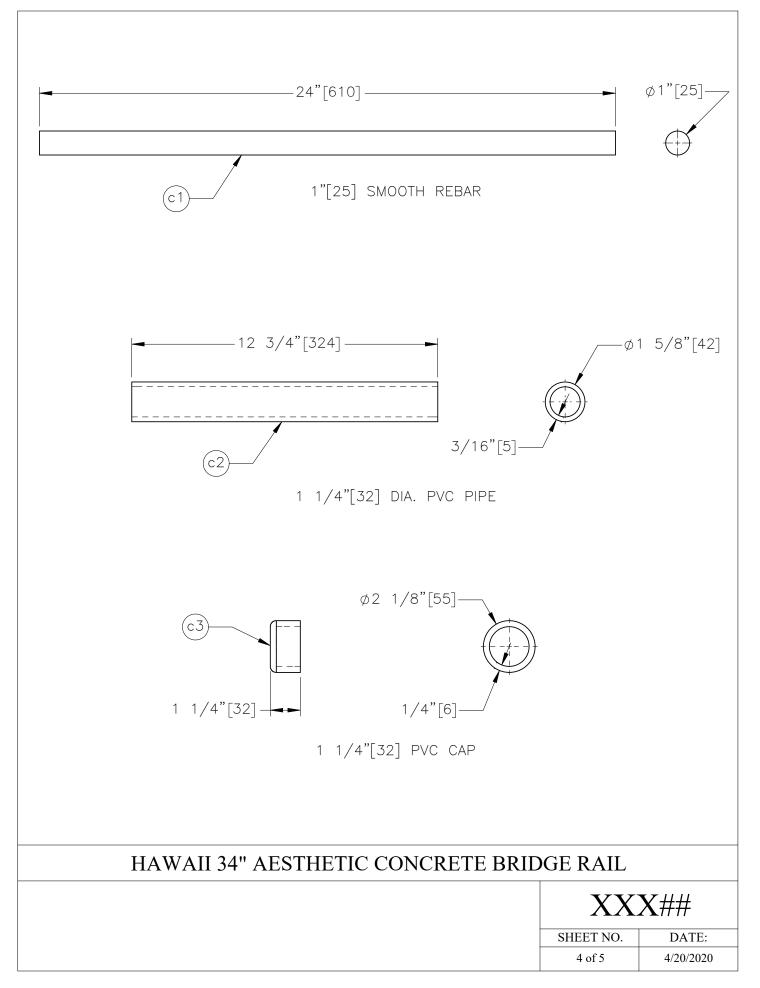
ELIGIBILITY

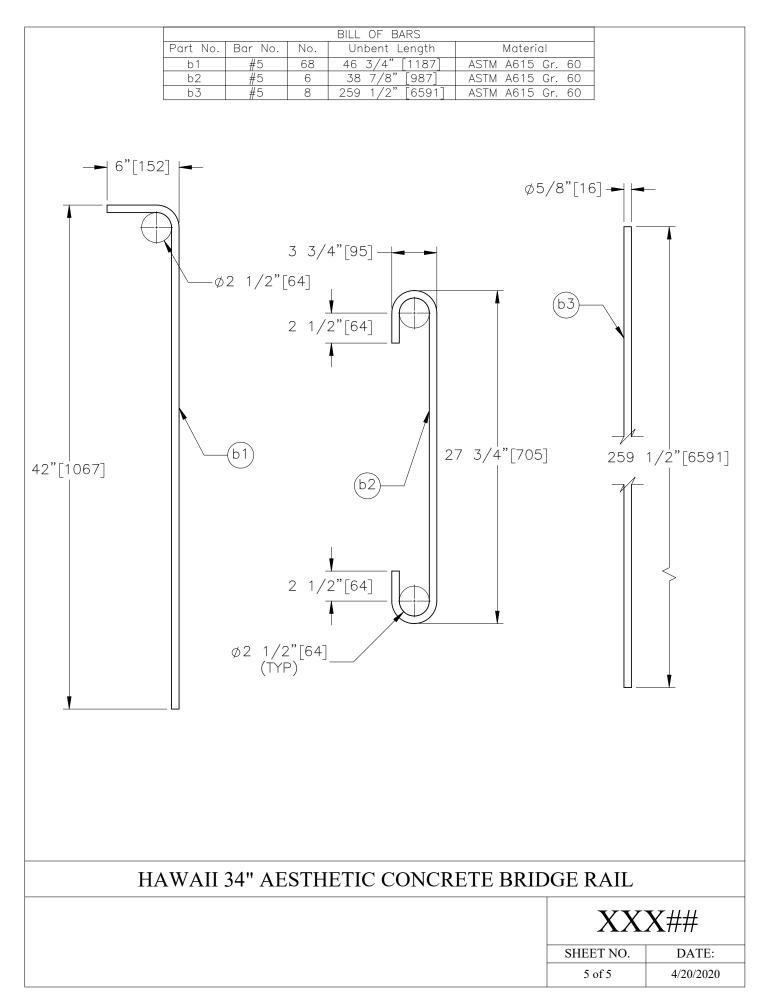
Eligibility will be pursued.

REFERENCES

Bielenberg, R. W., Yoo, S., Faller, R. K., and Urbank, E. L., *Crash Testing and Evaluation of the HDOT 34-in. Tall Aesthetic Concrete Bridge Rail: MASH Test Designation Nos. 3-10 and 3-11*, Report to Hawaii Department of Transportation, Transportation Report No. TRP-03-420-19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 2019.


CONTACT INFORMATION


Hawaii Department of Transportation Aliiaimoku Building 869 Punchbowl St. Honolulu, HI 96813


HAWAII 34" AESTHETIC CONCRETE BRIDGE RAIL

XXX##			
SHEET NO. DATE:			
2 of 5 4/20/2020			

Des. No. 1900011

Appendix I:

Non-Destructive Testing & Geotechnical Investigation Report

December 21, 2020

Ms. Katlyn Shergalis, P.E. Lochmueller Group 3502 Woodview Trace, Suite 150 Indianapolis, IN 46268

RE: Memorandum No.1 Preliminary Observations Non-Destructive Testing, Bridge Cores and Geotechnical Boring SR 933 over St. Joseph River Saint Joseph Co., Indiana EEI Project No. CJ205128

Dear Katlyn:

Terracon performed non-destructive testing (NDT), bridge cores, and a soil boring during the period of November 2 and November 17, 2020 on the SR 933 bridge over the St. Joseph River. This memorandum provides preliminary observations from these field activities.

Non-Destructive Testing Observations

To provide information regarding the condition of the concrete arches, we performed multiple nondestructive surveys of each of the three spans. The non-destructive methods included:

- 1. Preliminary site visit and Infrared Thermography (IR): The purpose of the IR survey was to provide a broad inspection of the underside of the concrete arches and identify any surficial signs that may be reflecting subsurface issues.
- 2. Ground Penetrating Radar (GPR) scan: The purpose of the GPR survey was to assist in identifying areas of subsurface deterioration and other anomalous zones.
- 3. Impact Echo (IE). The IE survey utilized information from the GPR survey to further investigate areas of subsurface deterioration and provide additional information on the overall thickness and identify deeper areas of potential deterioration that were undetectable with the GPR.
- 4. Rebar locator: The rebar locator provided information on cover thickness and rebar orientation in areas where GPR signal was limited due to reinforcing strips.

In general, the effectiveness of the IR survey was limited, likely due to interference from surficial coatings and the reinforcing strips. The areas of potential deterioration that were revealed by the IR survey corresponded to locations with surficial staining, seeps and mineral deposits and were limited to the downstream side of Span B. Other observations from the IR survey corresponded to visible construction joints and areas of the arch where the reinforcing strips were either separated from the arch or completely removed.

Due to the impacts of the reinforcing strips on the GPR signal, we completed a rebar scan using a Proceq Profoscope rebar locator to provide additional information on reinforcement presence. Three east-west scans (transects) were completed on each arch at the $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{3}{4}$ marks on

Earth Exploration Inc. / Terracon Consultants, Inc. 7770 West New York Street Indianapolis, IN 46214 P [317]273-1690 F [317]273-2250 www.terracon.com

Environmental

Appendix 1

Construction Materials

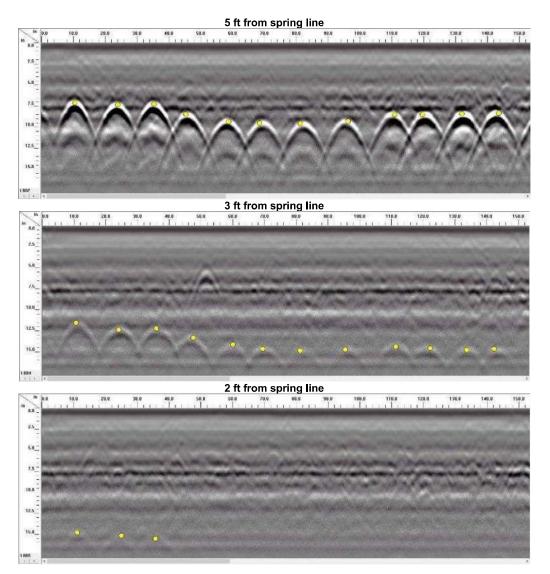
Fage 1 of 76

Facilities

each span from south to north. The reinforcing strips did not appear to influence the effectiveness of the rebar locator. The findings of the rebar scan are summarized in Table 1 below. The range of values corresponds to the minimum and maximum distance between longitudinal reinforcement observed among the three transects for each arch. Note that the rebar locator was unable to distinguish transverse reinforcement, likely due to interference from the longitudinal reinforcement. Furthermore, the estimated bar diameter could not be determined with the rebar locator. Transverse bars were observed in the GPR dataset and will be summarized in the final report.

Span	Spacing between Longitudinal Reinforcement (in.)	Concrete Cover thickness (in.)
A	10 - 15	21⁄4 - 31⁄2
В	10 - 14	1 - 31/2
С	10 - 14	1¼ - 3

Table 1: Summary of Longitudinal Reinforcement Observations


GPR lines were collected from the center (longitudinal) construction joint of each span to the east and west facades between the reinforcing strips, from about 7 ft above the spring line to the spring line. Longitudinal reinforcement bar spacing observed in these GPR transects was consistent with the rebar locator observations. The concrete cover thickness was consistently observed to increase as the longitudinal reinforcement approached the spring line. The longitudinal reinforcement became out of range approximately 1 to 2 ft above the spring line, as illustrated by the series of images below from Span A. The images below are from parallel lines collected from the center joint of Span A towards the west façade. The yellow markers represent reinforcement here

bars.

GPR Images – Span A

Based on initial NDT observations, areas of delamination were limited to the downstream, central area of Span B, generally within about 8 ft from the west façade (i.e., to the first construction joint). This zone also contains several surficial expressions (e.g. rust staining, active seeps, mineral crystallization) that may be the result of potential internal deterioration. These observations are consistent with historical information. Examples of surficial expressions observed in the downstream, central area of Span B are shown in the photographs below.

Surficial Expressions on Arch – Span B

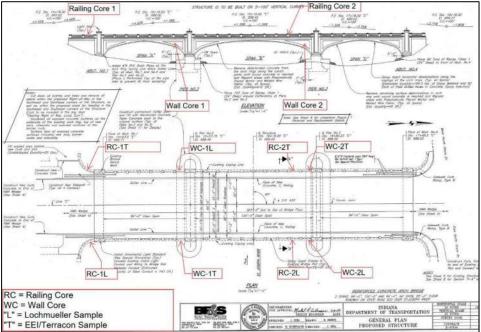
Rust staining and active seep, downstream center of Span B

Mineral crystallization, downstream center of Span B

Non-destructive Testing and Geotechnical Evaluation SR 933 over St. Joseph River
Saint Joseph Co., IN December 21, 2020 Project No. CJ205128

Test Cores and Geotechnical Boring Observations

A total of 14 test cores were performed as part of the assessment at the following locaitons:


- Three from the bridge deck (TC-2, TC-3, and TC-4);
- Three from the underside of the arch (AC-1A, AC-1B, and AC-1C); and
- Eight on the spandrel walls and railings (WC-1, WC-2 and RC-1, RC-2).
 - Four cores were recovered for Lochmueller (designated with an "L")
 - Four cores were recovered for Terracon (designated with a "T")

A geotechnical soil boring was performed near the south bridge abutment. Approximate locations for each core/boring are shown on the Exploration Site Plan and Spandrel Wall and Railing core Locations figure below.

Exploration Site Plan

Preliminary logs for test cores TC-2, TC-3, and TC-4 and Boring TB-1 are attached. Visual classifications of the arch, spandrel wall, and railing cores are presented in Table 2 below. Photos of the cores recovered are attached to this memo.

Test Core No.	Core Thickness (in)	Description - All Classifications are visual						
AC-1A	17.2	Portland Cement Concrete, 1-in. max. aggregate size, fractures near 7.3 in. and 11.5 in.						
AC-1B	13.5 *	Portland Cement Concrete, 1-in. max. aggregate size, fractures near 8.2 in. and 10.0 in.						
AC-1C	16.8	Portland Cement Concrete, 1-in. max. aggregate size, fractures near 5.0 and 12.0 in.						
RC-1T		Portland Cement Concrete, ¹ / ₂ -in. maximum aggregate size						
RC-2T		Limestone (possible fossiliferous limestone)						
WC-1T		Limestone (possible fossiliferous limestone)						
WC-2T Limestone (possible fossiliferous limestone)								
* Several in more inforr		were lost during coring operations. See core photo for						

Table 2 – Summary of Arch, Spandrel Wall, and Railing Cores

Preliminary observations include:

- The distance from the top of pavement to the bottom of the pier footing was about 35 ft at both piers.
- There was no discernable indication of a void below either pier footings.
- Each pier footing is supported on a granular (sand) layer about 1 ft in thickness over cohesive (clay) soils that appears to vary in consistency of soft to medium stiff.
- The arch fill consists of sand, gravel, and sandy loam with brick and possible asphalt/concrete fragments.

Laboratory tests are currently being performed on the soil samples collected in Bboring TB-1 and Test Cores TC-2 and TC-4. Strength and chloride/sulfate ion tests have been assigned based on your sample selections. Sample preparation is underway.

Thank you for the opportunity to provide our professional services. If you have any questions regarding the enclosed information, please contact us.

Sincerely, Terracon Consultants, Inc.

Sofa Bullenthi

Stephen Brellenthin, L.P.G. Senior Staff Geophysicist

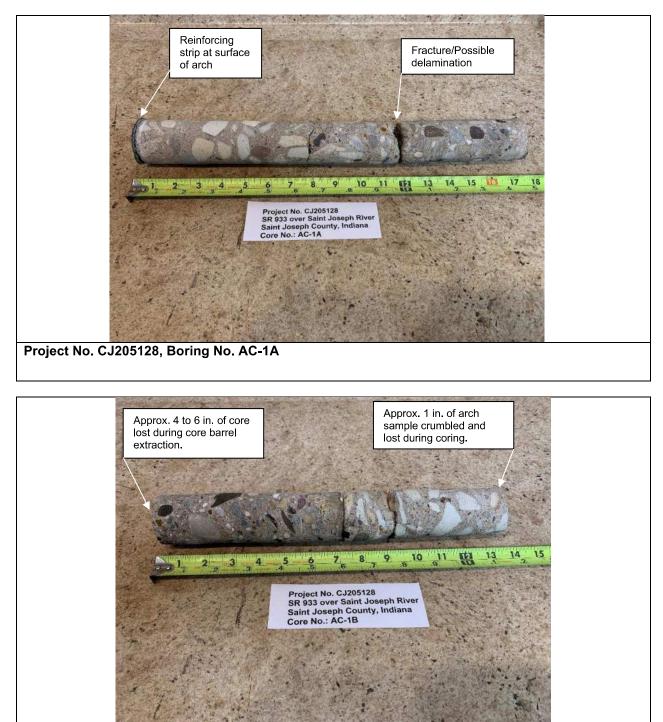
Attachments: Log of Test Boring (TC-2, TC-3, TC-4, TB-1) Core Photos

Scott Zajac, P.E. Project Engineer

											BORI	NG N	۰ . .		TC-2
EARTH		LO	G OF 1	FES	ΤB	ORING					SHEE	ΞT			1OF2
EXPLU	RATION	CLIENT : Lochmueller Grou	p, Inc.							_	LATIT	TUDE	Ξ:		41.68792
		DES NO. : 1900011	_ STRUC	TURE	: #: <u>(</u> 93	33) 31-71-36	90C			_	LONG	SITU	DE :		-86.25051
PROJE	ECT TYP	E: Bridge Assessment								_	DATU	JM :			WGS84
LOCA	TION	: SR 933 over St. Joseph Rive	r							_	DATE	E STA	٩RTI	ED	: 11-04-20
COUN	TY	: St. Joseph		PRO	JECT I	NO.: CJ205	128				DATE	CO	<u>MPL</u>	ETE	ED: 11-05-20
ELEVA	ATION :	684.0	BORING N	иетно	D : <u> </u>	Hollow Stem	Auge	er	_ нд	AMME	२	:_A	Auto		
STAT			RIG TYPE		:_[D-50				RILLEF	R/INSP	:_J	S		
LINE	= 1 . :	25.0 ft Right	CASING E	DIA.	:				_ те	MPER	RATURE	E : _7	0 °F		
DEPT	H :	38.0 ft	CORE SIZ	Έ	: 1	NQ2			W	EATHE	ER	: F	air		
GROU	NDWAT	ER: 모 Encountered at Dry	⊥ At c	omplet	tion <u>Dr</u>	¥									
ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DES	CRIPTION		SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP , tsf		ERBE IMITS	s	REMARKS
	ο Ω Ω	Asphaltic Concrete	0.2 4	NA	δĪ	<u> </u>	82	žŭ		<u>a</u> <u>a</u>	⊃Ŭ	LL	PL	ΡI	<u> </u>
.		Portland Cement Concrete	<u> </u>	A 4 4 A 4 4 A 4 4											
-	2.5				SS 1	28-16-26-22									
680.0	5.0	Sand and Gravel, (fill)			SS 2 SS 3	41-27-20-17 50/2"									
-	7.5_		8.5	0.000	SS 4	50/3"									
675.0- - - - - - - - - - - - - - - - - - -	- 10.0 - 10.0 	Portland Cement Concrete, ma aggregate size 1.0", fractured r 9.5', 12.6', 13.8', 14.3', 14.9', 1 16.2', 17.1', 17.6', 18.8'	near 8.6',		RC 1 RQD= 97% RC 2 RQD= 97%		100								
665.0-	17.5_ 	Limestone freetured peer 10.2	19.3		9776										
	- 20.0 <u></u> - -	Limestone, fractured near 19.3 19.5', 19.8', 20'	20.8		RC 3 RQD= 78%		98								
660.0-	22.5	Portland Cement Concrete, ma aggregate size 1.0", fractured n 22.8', 23.9'	x ear 21.8',	* 4 * 4 * 4 * 4 * 4											
	- 25.0 - - -	Limestone, fractured near 25.7	25.4 26.2		RC 4 RQD= 90%		98								
6655.0- 6655.0- 6655.0-	27.5	Portland Cement Concrete , ma aggregate size 1.0", fractured r 27.4', 27.8', 29', 29.5', 30'		PAP PAP PAP P	90%										
	30.0	Continued o		<u>Kanak</u> ing S	1	1	I	I		I	I				

										BORI	NG NO	.:	TC-2
	EARTH		LOG OF TES	ST B	ORING	i				SHEE	T		2 OF 2
	EXPLU	RATION	CLIENT : Lochmueller Group, Inc.						_	LATIT	UDE :		41.68792
			DES NO. : 1900011 STRUCTUR	E #: <u>(</u> 93	33) 31-71-36	690C			_	LONG	SITUDE	:	-86.25051
	PROJE	CT TYP	E: Bridge Assessment							DATU	JM :		WGS84
	ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DESCRIPTION	SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP., tsf	ATTERI LIMI	TS	REMARKS
	- - 650.0 - -	32.5 35.0	Portland Cement Concrete, max aggregate size 1.0", fractured near 31.1', 31.8', 32.1', 32.8', 33.3', and 33.9'; fractured in pieces near 28.4'-28.8', 30'-30.4', 32.1'-32.4', and 34.3'-34.6'; voided with possible weathering near 30'-31.1' and 32.4'-32.8' 35.0 Sand 36.0	RC 5 RQD= 61% RC 6 RQD= 81% SS 5		92 100 75							 - 35.0, Sand description based on driller's experi- ence and presence of sand in core
	- 645.0—	37.5	Clay, medium stiff, moist, gray 38.0 Bottom of Boring at 38.0 ft	5	2-3-4-5	/5							barrel bit.
	- - 640.0 - - 635.0 - -	40.0											
I IN DOT1.GDT 12/15/20	- - 630.0— - -	52.5											
EEI BORING LOG (INDOT FORMAT) LAT /LONG. CJ205128.GPJ IN_DOT1.GDT 12/15/20	- - 625.0— - -	57.5											
BORING LOG (INDOT FORM/	- - 620.0— - -	62.5 65.0 											

										BORI	NG NO	.:	TC-3
EARTH			G OF TES	ST B	ORING	j				SHEE	Т		1OF1
EXPLU	RATION	CLIENT : Lochmueller Grou	p, Inc.							LATIT	UDE :		41.68810
		DES NO. : 1900011	_ STRUCTUR	E #: <u>(93</u>	3) 31-71-3	690C				LONG			-86.25051
PROJE	ECT TYP	PE: Bridge Assessment								DATU	M :		WGS84
LOCAT	ION	: SR 933 over St. Joseph Rive	r							DATE	STAR	TED	: 11-05-20
COUN	TY	: St. Joseph	PRO		IO.: CJ20	5128		1		DATE	COMF	PLETE	D: 11-05-20
		684.0	BORING METH	10D : <u>-</u>	Iollow Sten	n Auge	er		MER	R	: Auto	0	
STATIO		25.0 ft Right	RIG TYPE	:_[0-50			DRILI	ER	/INSP	: <u>JS</u>		
LINE	- ' -		CASING DIA.	:					PER	ATURE	:_ 70 °	F	
DEPTH		4.7 ft	CORE SIZE					WEA	THE	R	: Fair		
GROU	NDWAT	ER: Encountered at <u>Dry</u>	⊥ At comple	etion <u>Dr</u>	L								
NOL	ш			<i>.</i>		ERY	盟두	UKY DENSITY, pcf POCKET	ţ,	IF. tsf	ATTERI		
ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DES	CRIPTION	SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE		PEN., tsf	UNCONF COMP., tsf			REMARKS
	50	Asphaltic Concrete	0.3	งี่รั ง	ਲੁਕ	%R			8	5ŭ	LL PL	. Pl	
_	-	Portland Cement Concrete Pa fractured near 0.5" and 1.5", re ment near 0.6"	/ ement, inforce-	✓ 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 #									 0.6, Steel reinforcement near 0.6 ft
-	-	Sand, (fill)	<u>1.5</u>			100							
- 680.0	2.5_	Portland Cement Concrete	4.7	RQD= 100%									
-	5.0	Bottom of Boring at 4.7	′ ft										
675.0—	7.5												

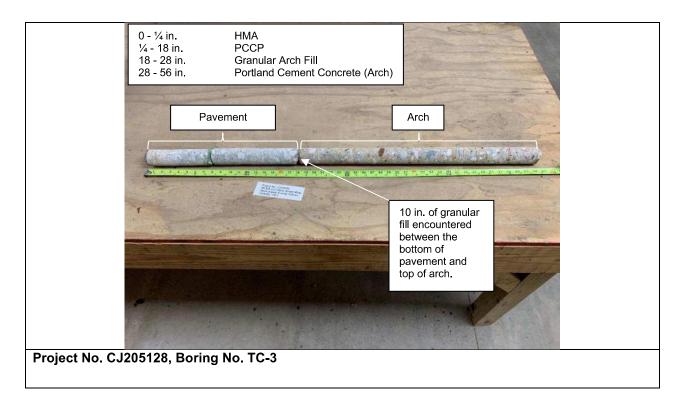

OCATION COUNTY ELEVATIO STATION DFFSET INE DEPTH GROUNDV	T TYP DN ON : 	CLIENT : <u>Lochmueller Grou</u> DES NO. : <u>1900011</u> E: Bridge Assessment : <u>SR 933 over St. Joseph Rive</u> : St. Joseph	BORING N RIG TYPE CASING D CORE SIZ	PROJ METHO	#: <u>(93</u> : IECT N DD : <u>H</u> : <u>D</u>	3) 31-71-3 O.: CJ20 ollow Ster	690C			_	LONG DATU DATE	UDE GITUE IM : STA	 DE : 	1 OF 2 41.68827 -86.25052 WGS84 D : <u>11-09-20</u>
PROJECT OCATION COUNTY ELEVATION DEFSET INE DEPTH GROUNDV NOLLY HUNCS COUNTY	T TYP DN , ON : _	DES NO. : <u>1900011</u> PE: Bridge Assessment : <u>SR 933 over St. Joseph Rive</u> : St. Joseph 684.0 25.0 ft Right 38.0 ft ER: ⊈ Encountered at <u>Dry</u>	BORING N RIG TYPE CASING D CORE SIZ	PROJ METHC DIA. ZE	IECT N DD : <u>H</u> : <u>D</u> :	O.: CJ20 ollow Ster	5128				LONG DATU DATE	BITUE IM : STA	 	-86.25052 WGS84 D : <u>11-09-20</u>
OCATION COUNTY ELEVATION DFFSET INE DEPTH GROUNDV NOLLY HUNCK COLLY NOLLY HUNCK COLLY COLY	DN / ON : - - - - - - - - - - - - -	E: Bridge Assessment : SR 933 over St. Joseph Rive : St. Joseph 684.0 25.0 ft Right 38.0 ft ER: ♀ Encountered at Dry	BORING N RIG TYPE CASING D CORE SIZ	PROJ METHC DIA. ZE	IECT N DD : <u>H</u> : <u>D</u> :	O.: CJ20 ollow Ster	5128			_	DATU DATE	IM : STA	RTE	WGS84 D : <u>11-09-20</u>
OCATION COUNTY ELEVATION DFFSET INE DEPTH GROUNDV NOLLY HUNCK COLLY NOLLY HUNCK COLLY COLY	DN / ON : - - - - - - - - - - - - -	: SR 933 over St. Joseph Rive : St. Joseph 684.0 25.0 ft Right 38.0 ft ER: ⊻ Encountered at Dry	BORING M RIG TYPE CASING D CORE SIZ	METHC : DIA. (E	DD : <u>H</u> <u>D</u> : <u>D</u> :	ollow Ster		r		_	DATE	STA		D : <u>11-09-20</u>
COUNTY ELEVATIO STATION DFFSET INE DEPTH GROUNDV NOLLON SROUNDV NOLLON SROUNDV NOLLON SROUNDV	, ON : 	: St. Joseph 684.0 25.0 ft Right 38.0 ft ER: ⊻ Encountered at <u>Dry</u>	BORING M RIG TYPE CASING D CORE SIZ	METHC : DIA. (E	DD : <u>H</u> <u>D</u> : <u>D</u> :	ollow Ster		r		_				
ELEVATION STATION DFFSET INE DEPTH GROUNDV NOLLEN BROUNDV NOLLEN STATION STATION CONTINUES	ON : N : : : : OWATI	684.0 25.0 ft Right 38.0 ft ER: ⊻ Encountered at <u>Dry</u>	BORING N RIG TYPE CASING D CORE SIZ	METHC : DIA. (E	DD : <u>H</u> <u>D</u> : <u>D</u> :	ollow Ster		r			DATE	CON		
STATION DFFSET INE DEPTH GROUNDV NOLLON BROUNDV NOLLON BROUNDV ON STATION CONTRACTOR		25.0 ft Right 38.0 ft ER: ⊻ Encountered at <u>Dry</u>	RIG TYPE CASING D CORE SIZ	DIA. ZE	: <u>D</u> :		n Auge	r						TED: 11-09-20
DFFSET INE DEPTH GROUNDV NOLLON BROUNDV NOLLON BROUNDV 2.5	- - : : : : : : : : : : : : : : : : : :	38.0 ft ER:	CASING D	DIA. E	:	-50			_ H#	MMEF	R	:_A	uto	
	: : : : : : : : : : : : : : : : : : :	38.0 ft ER:	CORE SIZ	Έ						RILLER	/INSP	:_J\$	S	
SROUNDV GROUNDV BROUNDV EFERATION 2.5 2.5	OWATI	ER: Encountered at <u>Dry</u>				-			_ те	MPER	ATURE	:_7	5°F	
ELEVATION SAMPLE			⊥ At co	omplet	: N	Q2			w	EATHE	R	: C	loudy	
2.5	SAMPLE DEPTH	SOIL/MATERIAL DES		•	ion <u>Dry</u>									
2.5	38		CRIPTION		SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF. COMP., tsf		RBER	REMARKS
-		Asula Itis Osusanta		N' A'	אר S⊿	SF pe	%E	žΰ	68	22	Ξŭ	LL	PL P	<u> </u>
-] [Asphaltic Concrete Portland Cement Concrete	0.3	A 4 4										
-			1.5	P 6.4										
- 5.0	44444	Sandy Loam, moist, brown, wit (fill)	h gravel,	SS 1 B 1	50/3	100							 3.5, Bucket sample of cuttings 3.5 to 10 ft
575.0 - 10.0 - 12.5	-		10.0	Parter and	RC 1 RQD= 100%		100							
570.0 - 15.0 - 17.5 565.0		Portland Cement Concrete, ma aggregate size 1.0", fractures r 12.9', 14.5', 16.6', 17.6', 18.2',	near 10.6', 18.7' 19.2		RC 2 RQD= 100%		100							
- 20.0 - - 22.5		Limestone with Interbedded S fractures near 19.2', 19.7', 20.3			RC 3 RQD=		100							
60.0 _ 25.0 _	- - 5.0 - - -	Portland Cement Concrete , ma aggregate size 1.0", fractures r 21.7', 22.8', 23.6', 24.6', and 28	near 21.5',	y bay bay bay bay	96% RC									
655.0-30.0	7.5 			A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 RQD= 100%		100							

									BORI	NGI	NO.:		TC-4
EART	H	LOG OF TES	ST B	ORING					SHEE	Т			2OF2
EXPL	ORATION	CLIENT : Lochmueller Group, Inc.						_	LATIT	UDE	Ξ:		41.68827
		DES NO. : 1900011 STRUCTUR	E #: <u>(</u> 93	3) 31-71-36	90C			_	LONG	SITU	DE :	:	-86.25052
PRO	IECT TYP	E: Bridge Assessment							DATU	M :			WGS84
ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DESCRIPTION	SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP , tsf		.IMIT:	ERG S PI	REMARKS
650.0	 - 32.5 	Portland Cement Concrete, max aggregate size 1.0", fractures near 21.5', 21.7', 22.8', 23.6', 24.6', and 28.5' 35.0	RC 5 RQD=		100								- 35.0, Sand description based
	37.5	Sand 36.0 Clay, very soft to soft, grey 38.0	ss 2		0							-	 on driller's experience and presence of sand in core barrel bit.
645.0	40.0	Bottom of Boring at 38.0 ft											36.0, Cohesive soil/clay present on core barrel and split spoon shoe. Two attempts were
640.0	45.0- - - 47.5- -												made to recover a sample. SPT val- ues not recorded but approx. one- half of those recorded at TC-2 based on driller's notes.
635.0	- 50.0- - 52.5-												
GPJ IN D011 GDT 15 0.009	- 55.0												
(AT) LAT./LONG. CJ205128 0.559 0.579	57.5												
EEI BORING LOG (INDOT FORMAT) LAT./LONG. CJ205128.GPJ IN_DOT1.GDT 12/15/20 0.050 0.07500 0.07500 0.07500 0.07500 0.07500 0.07500 0.07500 0.07500 0.07500 0.07500 0.07500 0.07500 0.075000 0.075000 0.0750000000000	62.5 - 65.0 												

EARTH Exploration				1 60						<u></u>	_			
			. 20		ORING	•				SHEE				1 OF <u>3</u>
a Tierracon cons	CLIENT . LOCHINGEIER GR				0.04 = 1 =				_	LATIT				
	DES NO. : <u>1900011</u>	STRU	JURE	: #: <u>(93</u>	3) 31-71-3	690C								-86.25051
	PE: Bridge Assessment								_	DATU				WGS84
	: SR 933 over St. Joseph Riv	ver	000		0.0100	-400								: <u>11-12-20</u>
	: St. Joseph	DODINO			O.: CJ20			<u> </u>					EIE	D: 11-12-20
ELEVATION : STATION :	684.0 37 S of Bridge Joint	BORING					r	-	AMMEF			Auto		
	25.0 ft Right				ME 550 X			-	RILLER		:_J			
LINE :				:				_			_			
	90.0 ft				-			VV	EATHE	:R	: F			
GROUNDWAT	ER: ∇ Encountered at <u>19.0</u>	<u>ft</u> ⊥¥ At c	complet	tion <u>10.</u>	<u>0 ft</u>							स ्च (Cave	ed in at <u>37.2 ft</u>
ELEVATION SAMPLE DEPTH	SOIL/MATERIAL DE	SCRIPTION		SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP., tsf			3	REMARKS
				ωź	ਨ ਕ	82	žŭ		م	Dυ	LL	PL	PI	
	Asphaltic Concrete Portland Cement Concrete	1.0												
		1.6		ss		_								
2.5				1	5-3-4	0								
680.0				SS 2	2-1-2	67								
7.5			· · · ·	SS 3	2-3-3	33			0.75 0.50					
675.0 1 0.0	Sandy Loam, very loose to lo dark brown to brown below 1 cohesive near 6 and 10 ft, wi seam near 14 ft	1 ft,		SS 4	2-3-7	0			0.75					
12.5			 	SS 5	1-2-3	100								
670.0				SS 6	1-2-2	100								
17.5		17.0	· · · · ·	SS 7	1-2-4	100								
665.0 ¥ -				SS 8	3-3-5	83								
22.5	Gravelly Sand, very loose to			4	2-2-3	100								
560.0 - 25.0 -	dense, moist to wet below 19 with sand seams near 18 and				0-1-2	100								
27.5				4 SS	2-2-3	100								
655.0			0.00	SS 12	3-7-13	100								

										BOR	NG N	10.:		TB-1	
	EARTH	RATION	LOG OF TES	SI B	ORING	j				SHEE				2 OF 3	
		A Terracon correct	CLIENT : Lochmueller Group, Inc.						_	LATI					
			DES NO. : 1900011 STRUCTUR	RE #: <u>(93</u>	33) 31-71-36	590C			_			DE :			—
┟			PE: Bridge Assessment					cť		DATU			Τ	WGS84	
	ELEVATION	ш				K	盟	DRY DENSITY, pcf	F #	tsf	ATTE	ERBE	RG		
	EVAT	SAMPLE DEPTH	SOIL/MATERIAL DESCRIPTION	SAMPLE NUMBER	e		STU	\ VSIT	POCKET PEN., tsf	UNCONF COMP , tsf				REMARKS	
	ELE	SANDEI		SAN	SPT per 6"	% RECOVERY	MOISTURE	DEL	PO	NO N	LL	PL	ΡI		
	-	- - 32.5	Gravelly Sand, very loose to medium dense, moist to wet below 19 ft, brown, with sand seams near 18 and 29 ft 32.0	0.											
	650.0		4.4	/ SS	3-5-8	100			25						
	-	35.0	/* */ + +/	[≁] / 13	3-5-8	100			3.5 3.75						
	 	- - 37.5	+/+ +	4 7 1 1											
	645.0—			/+ / ss	4-5-8	100			0.75						
	-	40.0	<i>↓ ↓</i>	14	4-5-8	100			0.75						
	-			4											
	-		4 /	A											
	-	42.5		7											
	640.0-	$-\overline{\Lambda}$	+/+	4 ss	2-4-5	100			2.75						
	-	45.0	+ + + +	/≠ 15 ≠	2.0				2.5						
	_	-	×+	+											
	-	47.5		/+ /											
	-		/ / / / / / / / / / / / / / / / / / /	1											
	635.0_	I I	Silty Clay, medium stiff to hard, moist to wet, gray, with sand seams near 29, 60	4 SS	2-4-5	100			>4.5						
	-	50.0	and 69 ft + +	<i>†</i>					3.0						
	-	-		+											
/20	-	52.5	+/+ +	/+ _{											
12/10	-		/ +	*											
CDI	630.0—		/ ************************************	+ SS + 17	2-3-4	100			2.5						
<u>DOI1GD</u>	_	55.0	4,4,	A					2.0						
CJ205128.GPJ IN	-	-	/* * + +	*) +)											
28.6	-	57.5	+/+	4											
12021:	-		/+ /+ /+ /+	* *											
-	625.0_		× +	/+ SS / 18	2-5-25	100			1.75 1.25						
VI /LUNG	-	60.0_/		, A					1.20						
	-		<i>↓ ↓ ↓ ↓</i>	*											
FURMAI) LA	-	62.5		Ž]											
	-		4.4.	A											
DI DI	620.0—			+ SS + 19	5-8-16	100			2.0 1.25						
NGLC	-	65.0 / \	+/+	4					1.20						
			+++	/' +/											
п			Continued on next page												

											BORI	NGI	NO.:		TB-1
E	ARTH	DATION	LOG OF T	ES	L B(DRING					SHEE				3 OF 3
	APLU	RATION	CLIENT : Lochmueller Group, Inc.							_	LATIT				
				TURE	#: <u>(93</u>	3) 31-71-36	90C			_			DE :		
P	ROJE		E: Bridge Assessment						pcf		DATU	<u>////:</u>			WGS84
	ELEVATION				r		RY	吊다	, , ,	⊢ ∽	E.	ATT	ERBE	ERG	
	VAT	APLE TH	SOIL/MATERIAL DESCRIPTION		IPLE ABEI	. to	OVE	STU	ISIT	L, ts	NON <u>'</u>			5	REMARKS
	ЕГЕ	SAMPLE DEPTH			SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, I	POCKET PEN., tsf	UNCONF COMP , tsf	LL	PL	ΡI	
6	- - 15.0— -	67.5	Silty Clay, medium stiff to hard, moist to	++++ ++++ +++++ ++++++++++++++++++++++	SS 20	13-16-15	100			1.0					
6	- - 10.0 - -	72.5	wet, gray, with sand seams near 29, 60 and 69 ft 76.0	+ +	SS 21	17-24-24	100			0.75 1.0					
6	- - 05.0— -	77.5		· · · · · · · · · · · · · · · · · · ·	SS 22	26-15-18	100								
6	- - 	82.5	Sand, dense, wet, gray	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	SS 23	15-19-23	100								
T1.GDT 12/10/20 G	- - 95.0 - -	90.0	Sandy Gravel, dense, wet, gray 88.0 90.0 90.0 Bottom of Boring at 90.0 ft 90.0		SS 24	18-16-19	100								
0NG. CJ205128.GPJ IN_DO	- - 90.0 - -	92.5													
	-	97.5													
	-	102.5													


Project No. CJ205128, Boring No. AC-1B

January 25, 2021

Ms. Katlyn Shergalis, P.E. Lochmueller Group 3502 Woodview Trace, Suite 150 Indianapolis, IN 46268

RE: Memorandum No.2

Observations Non-Destructive Testing, Bridge Cores, and Geotechnical Boring SR 933 over St. Joseph River Saint Joseph Co., Indiana EEI Project No. CJ205128

Dear Katlyn:

Terracon performed non-destructive testing (NDT), bridge cores, and a soil boring during the period of November 2 through November 17, 2020 on the SR 933 bridge over the St. Joseph River. Memorandum No. 1, dated December 21, 2020, provided preliminary NDT and coring observations. This memorandum incorporates additional data review and laboratory test results and supersedes the observations from Memorandum No. 1.

Previous NDT and Bridge Core Observations

2002: Earth Exploration Inc. (EEI) performed a foundation condition assessment of Pier No. 3. The 2002 assessment was prompted by a 2000 Bridge Condition Report by Collins Engineers, Inc. that indicated a portion of the foundation supporting Pier No. 3 had been undermined. The purpose of the foundation condition assessment was to assess the substructure conditions associated with the foundation of Pier No. 3, including an evaluation of the presence, length, and type of piling and depths of historical scouring. Exploratory test borings, a parallel seismic survey, and a Ground Penetrating Radar (GPR) survey were performed as part of the assessment at Pier 3. Among other things, the foundation condition assessment concluded that:

- Pier No. 3 includes timber piles that extending approximately 15 to 16 ft below the bottom of the pier cap; and
- The pier foundation had experienced a temporary loss in foundation support due to scour resulting in a redistribution of load resistance from the subgrade soils directly below the foundation to the piles.

Sheeting surrounding and structurally-tied to the pier foundation was recommended to reduce potential scour effects.

2006: EEI performed an NDT survey on each span of the bridge to evaluate the occurrence of delamination of the concrete surface of the outer arch rings within a few feet of the limestone fascia. The Impact Echo (IE) method was performed. Delamination was present in each of the arch rings. Indications of honeycombing and/or delamination were observed elsewhere, though conclusive determinations could not be made.

2011: EEI performed an Integrity Assessment of the bridge to evaluate the occurrence of horizontal delamination of the concrete surface on the underside of the arches; depths of transverse cracking; extent of epoxy injection from a previous repair; and thicknesses of the arches and spandrel walls. The NDT methods performed included IE and an electromagnetic rebar locator. Concrete coring was performed as well. The assessment indicated the following:

- Delamination was present in Span B but was not observed in Spans A and C at the locations tested;
- Transverse cracking depths ranged from 8 to 17 in. deep into the arch;
- Honeycombing was present within about 3 in. from the underside of the arch surface.
- IE observations suggested the concrete thickness ranged from 20 to 33 in. over the flatter portions of the arches, with a majority of thicknesses between 22 and 24 in;
- Steel reinforcement observations suggested a cover of about 3 in. and bar spacing of approximately 12 in.; and,
- Cores performed from the underside of the arches indicated that the arch thickness ranged from 22 to 24 in. Compressive strengths of the arch concrete ranged from about 5,000 to 9,200 psi.

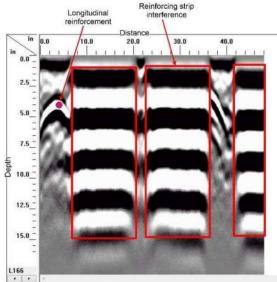
Non-Destructive Testing Observations

To provide information regarding the current (2020) condition of the concrete arches, we performed multiple NDT surveys on the underside of the arches on each span. The NDT survey extents are presented in Exhibit 1. The non-destructive methods included:

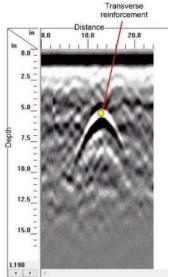
- Infrared Thermography (IR): The purpose of the IR survey was to provide a broad inspection of the underside of the concrete arches to identify any surficial signs that may be indicative of issues originating within the arches;
- Rebar Locator: The rebar locator provided information on concrete cover thickness and rebar orientation in areas where the GPR signal was limited;
- Ground Penetrating Radar: The purpose of the GPR survey was to assist in identifying areas of deterioration within the arch and other anomalous zones; and
- Impact Echo: The IE survey utilized information from the GPR survey to further investigate areas of subsurface deterioration, provide additional information on the overall arch thickness, and identify deeper areas of potential deterioration that were undetectable with the GPR.

Infrared Thermography

At the time of the IR survey, the surface of the underside of each arch was covered with paint and fiber-reinforced polymer (FRP) strips. The FRP strips were approximately 12-in. wide and spanned across the underside of each arch from approximately 5 ft above each springline. The IR survey was limited due to these surface conditions of the arch (i.e., the presence of the FRP strips). In general, areas of potential deterioration identified by the IR corresponded to locations of surficial staining, seeps, and efflorescence. These surficial features were generally located on the downstream portion of Span B.



Rebar Locator


The rebar locator indicated longitudinal bar spacing between 10 and 15 in., and a cover thickness from about 1 to $3\frac{1}{2}$ in. on all spans. The rebar locator was unable to determine location and cover thickness of transverse reinforcing bars.

GPR Survey

The GPR survey was performed using a GSSI Structure Scan Mini XT with a 2.6 GHz antenna. GPR transects were performed near the springlines and in a series of 2 ft by 4 ft GPR grids collected every 5 ft on the underside of the arch on each span. See Exhibit 1 for survey extents and Exhibit 2 for an illustration of the GPR grid layout. Two east-west GPR lines were collected in each grid and oriented perpendicular to the FRP strips. Due to interference from the FRP strips, north-south lines (parallel to the FRP strips) were limited to the areas between the FRP strips. These space constraints typically allowed for one to three lines per grid. Additionally, the inability to collect adjacent (side-by-side) GPR lines within a grid further limited interpretation. See the images below for data examples. On average, the maximum penetration depth of the GPR signal was approximately 10 in.

Data example from east-west line

Data example from north-south line

Zones of potential deterioration within the arch and reinforcement locations are presented on Exhibits 2, 3, and 4. Areas of delamination/potential deterioration within the effective range of the GPR appear to be concentrated on the downstream portion near mid-span of Span B. Zones of deterioration were not observed in the GPR data collected on Spans A and C. These observations are generally consistent with previously-made observations.

GPR transects near the springlines indicated longitudinal spacing consistent with the rebar locator observations. Additionally, cover thickness increased as the longitudinal reinforcement

Non-destructive Testing and Geotechnical Evaluation SR 933 over St. Joseph River Saint Joseph Co., IN January 25, 2021 Project No. CJ205128

approached the springlines, as observed in the GPR transects. Transverse reinforcement was observed on the underside of each span. Additional longitudinal reinforcement was observed with the rebar locator transects. Due to the spacing of the grids, GPR observations did not capture all reinforcement present. The reinforcement response observed on the GPR survey is consistent with round steel bars. Reinforcement other than rebar (e.g., steel trusses, falsework) was not observed in the GPR survey or rebar locator transects.

Impact Echo Survey

Impact echo testing was performed utilizing equipment manufactured by Impact Echo Instruments Company of Ithaca, New York. The instrument was calibrated to a depth of 28-in. based on a core length obtained near the midspan of Span B (Test Core TC-3). Wave speed was calculated to be 6,500 meters-per-second with a frequency of 4.6 Kilohertz. Impact Echo testing was performed at 83 locations on the bridge (25 locations on Span A, 36 on Span B and 22 on Span C). Results indicated three locations that exhibited delaminations on the downstream side of Span B at approximately 5 in. from the surface of the arch at the center of the span to 16 in. in the northwest corner of the arch. Evidence of delamination was not observed in the IE measurements collected on Spans A and C. The locations exhibiting delaminations are noted on Exhibit 4. Note that these locations do not encompass all the testing locations, only those exhibiting delamination. Results of all IE tests performed for this assessment are tabulated in the attached Summary of Impact Echo Results. Impact echo observations indicate that the arch thicknesses range from about 23 to 28 in.

Drawings prepared by Butler Fairman and Seufert (BF&S) from 2012 displayed mapped cracks and patches present at that time. Such historical information was digitized and combined with the present NDT observations and are shown on Exhibits 3, 4, and 5. Observations from EEI's 2011 NDT surveys are also included on Exhibits 3, 4 and 5.

Test Cores and Geotechnical Boring Observations

A total of fourteen test cores were performed as part of the assessment for the following purposes:

- Three from the bridge deck using truck-mounted equipment (TC-2, TC-3, and TC-4);
 - Test Cores TC-2 and TC-4 were performed over/through Pier Nos. 2 and 3, respectively, to obtain a vertical profile of the pavement, arch fill, pier concrete, and foundation concrete. Test Core TC-3 was performed near the midpoint of Span B with the intention of obtaining a continuous core of the arch concrete to calibrate the IE survey.
- Three from the bridge deck using hand-operated equipment (AC-1A, AC-1B, and AC-1C);
 - Test Cores AC-1A and AC-1C were performed in areas where cracks were previously mapped on the underside of Spans A and C. Test Core AC-1B was performed near an area of Span B where the IE indicated delamination.

- Eight on the spandrel walls and railings using hand-operated equipment (WC-1, WC-2 and RC-1, RC-2).
 - Four cores were recovered for Lochmueller (designated with an "L")
 - Four cores were recovered for Terracon (designated with a "T") for visual classification purposes.

A geotechnical soil boring (Boring TB-1) was performed near the south bridge abutment. A geotechnical soil boring (Boring TB-2) will be performed near the north bridge abutment at a later date. Approximate locations for each test core/boring performed from the bridge deck/pavement surface are shown on Exhibit 1. The approximate test core locations performed on the spandrel walls and railings are shown on Exhibit 6.

The exploratory locations were marked in the field by Terracon personnel referencing physical features on the bridge and marked utilities. Ground surface elevations noted on the core/boring logs were estimated based on topographic information depicted on historic plans. Details of the drilling and sampling procedures are attached. Portions of the core holes within the concrete arches/piers were backfilled with cement grout. A combination of grout, sand, and gravel was used to backfill the portion of the core holes located within the arch fill. All core holes were capped with a concrete patch.

While performing Test Core TC-2 (through Pier 2), circulating water used in the coring process was observed exiting the eastern (upstream) drains on both sides of the pier, from several arch joints, and from joints on the upstream facade near the base of the pier as shown in the photographs below. The same phenomena was not readily apparent while performing Test Core TC-4 through Pier 3.

The south side of Pier 2 while performing Test Core TC-2.

The north side of Pier 2 while performing Test Core TC-2. Water exiting the drain, arch joints and façade.

Test Cores TC-2 and TC-4 both extended through the bottom of the concrete footings. A granular (sand) layer about 1 ft in thickness over cohesive (clay) soil varying in consistency from soft to medium stiff was exposed below the bottom of the footings. No discernable indication of a void was observed below either footing during coring/sampling.

Logs for Test Cores TC-2 through TC-4 and Boring TB-1 are attached. A summary of the visual classifications for the remaining test cores is presented in the table below. Core photos annotated with descriptive information and laboratory test results are also attached.

Test Core No.	Core Length (in)	Visual Classification							
AC-1A	17.2 *	Portland Cement Concrete, 1-in. max. aggregate size							
AC-1B	13.5 *	Portland Cement Concrete, 1-in. max. aggregate size							
AC-1C	16.8 *	Portland Cement Concrete, 1-in. max. aggregate size							
RC-1T **	4	Portland Cement Concrete, ½-in. maximum aggregate size							
RC-2T **	4	Limestone (fossiliferous)							
WC-1T **	4	Limestone (fossiliferous)							
WC-2T **	4	Limestone (fossiliferous)							
* Recovered core length. The core lengths do not necessarily equal the arch thickness at these test core locations. See memo text below for additional information.									
** Spandrel wall and railing cores were obtained for visual classification purposes only.									

Summary of Visual Classifications Arch, Spandrel Wall, and Railing Cores

The arch core lengths recovered from Test Cores AC-1A through AC-1C are shorter compared to the arch core length recovered at Test Core TC-3. Due to safety constraints that arose during coring operations, Test Cores AC-1A through AC-1C could not be obtained in one continuous core run as was possible for Test Core TC-3 (i.e., multiple runs of approximately 4 in. in length were required to recover the cores). This process results in greater potential for core loss (e.g., see annotated core photo for Test Core AC-1B attached). As such, the recovered core lengths for Test Cores AC-1A through AC-1C do not necessarily reflect the arch thickness at these test core locations. In our opinion, the fractures observed in Test Cores AC-1A through AC-1C are due to mechanical effects of the coring process itself and do not reflect *in situ* conditions.

Test Core TC-3 is considered to have provided the highest quality core recovery among the four cores performed through the arch. As indicated earlier, the IE was calibrated using the arch core length from Test Core TC-3. The IE results from the current assessment indicate that the arch is no less than about 23 in. in thickness at the locations tested. All locations where IE tests were performed are shown on Exhibits 3 through 5.

Laboratory Testing

Laboratory tests were performed on soil samples and on the concrete cores. Soil tests included classification and strength testing. Sulfate ion and chloride ion concentration tests were performed on the arch fill soil collected from the auger cuttings in Test Core TC-4. Concrete testing consisting of compressive strength, density, and chloride ion concentration were performed on sample selections provided by you. As additional input, phenolphthalein stain testing was performed on four core samples to provide an indication of the degree of carbonation.

Results of the laboratory tests are provided on the attached logs, core photos, and/or respective laboratory reports in the attachments. In summary:

- The arch fill soil recovered from Test Core TC-4:
 - Soluble Sulfate = 260 ppm
 - \circ Chloride = 8,000 ppm
- Compressive strength of the arch concrete ranges from about 5,260 psi to 9,660 psi.
- Compressive strength of the pier footing concrete:
 - Pier No. 2 2,010 psi
 - Pier No. 3 6,400 psi
- Chloride content in concrete ranged from 0.007 to 0.032 lb/ft³
- No carbonation was apparent in the samples tested.

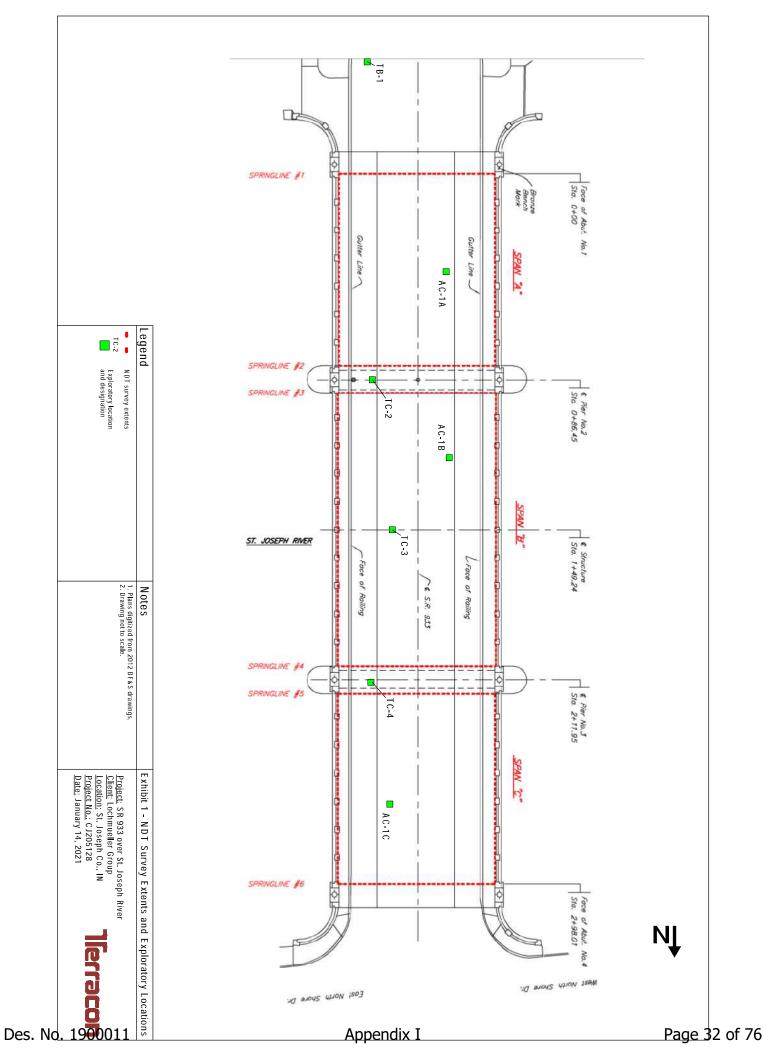
Action Items

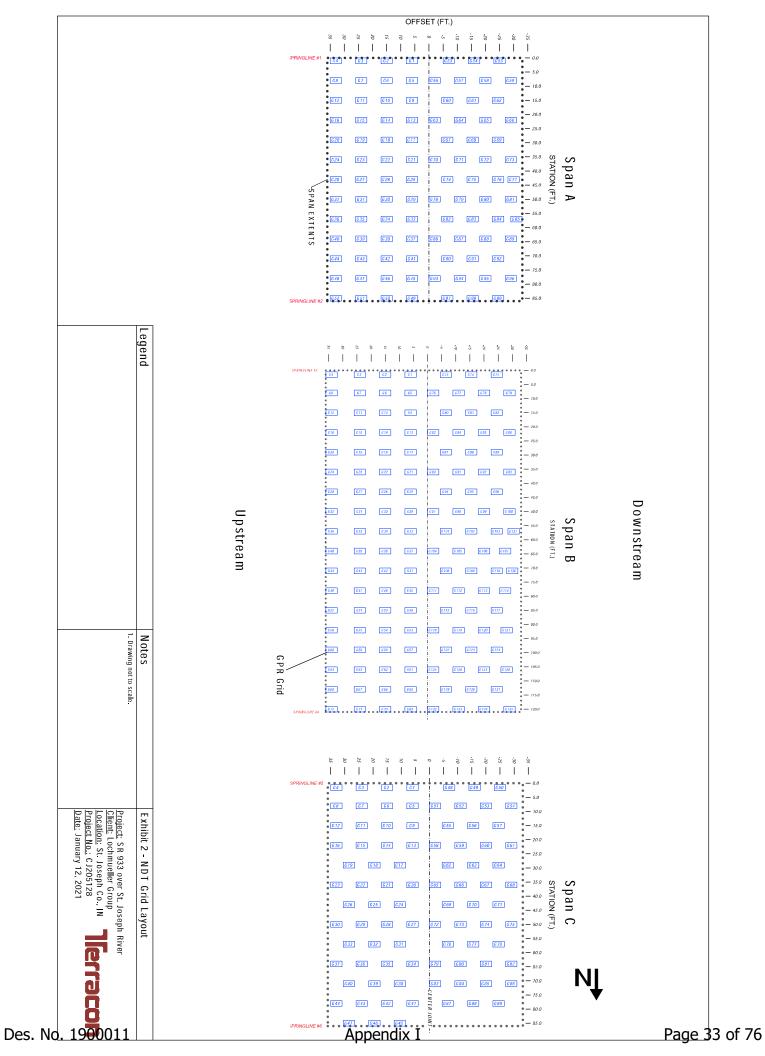
Information from Boring TB-2 that will be performed near the north abutment will be presented on a boring log and submitted to you once drilling and laboratory testing is completed at a future date. We will proceed with attempting to recover additional arch core samples near Test Cores AC-1A through AC-1C if warranted based on discussions with you and the project team.

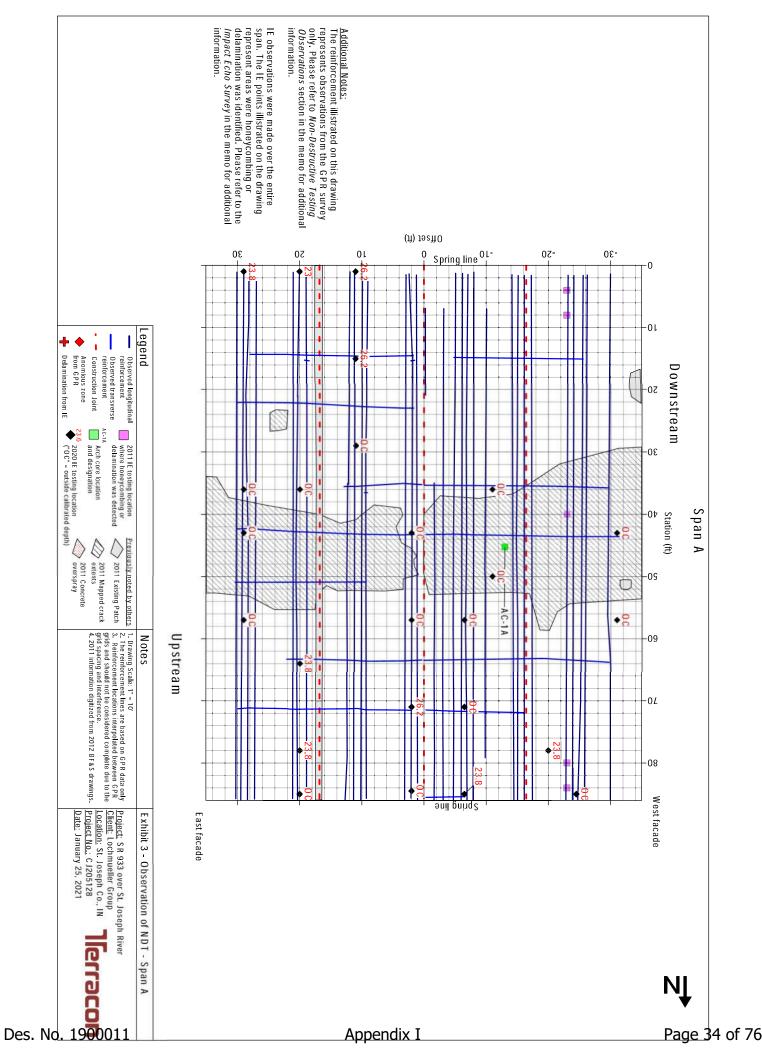
Closing

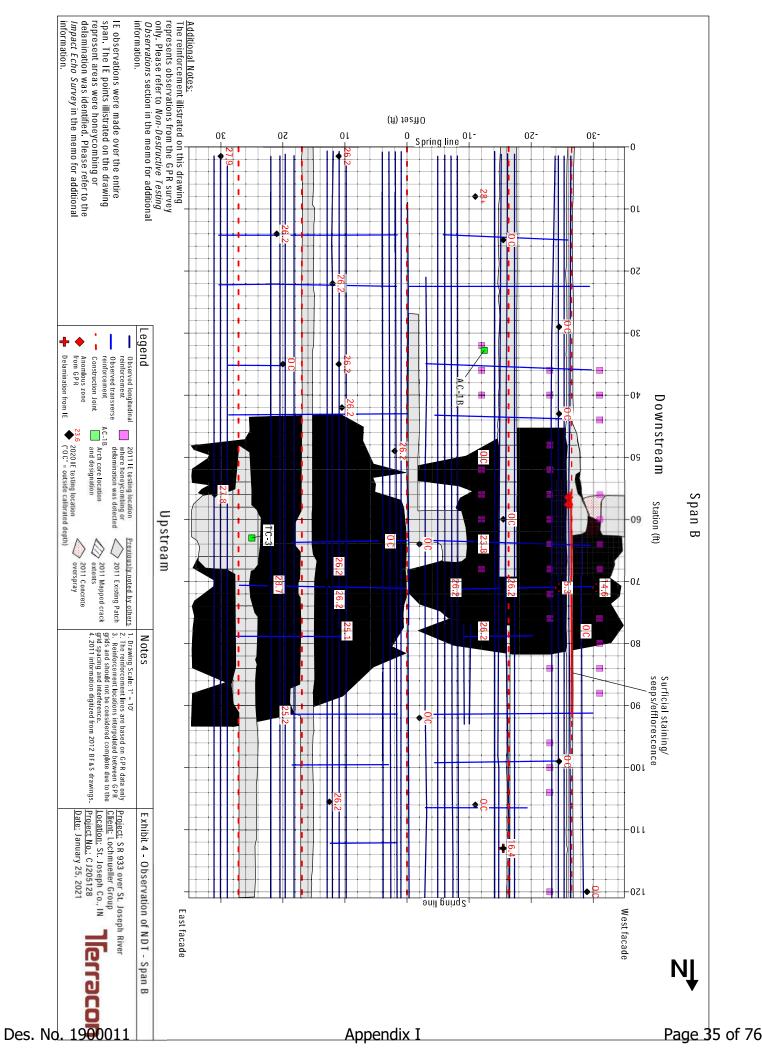
Thank you for the opportunity to provide our professional services. If you have any questions, please contact us.

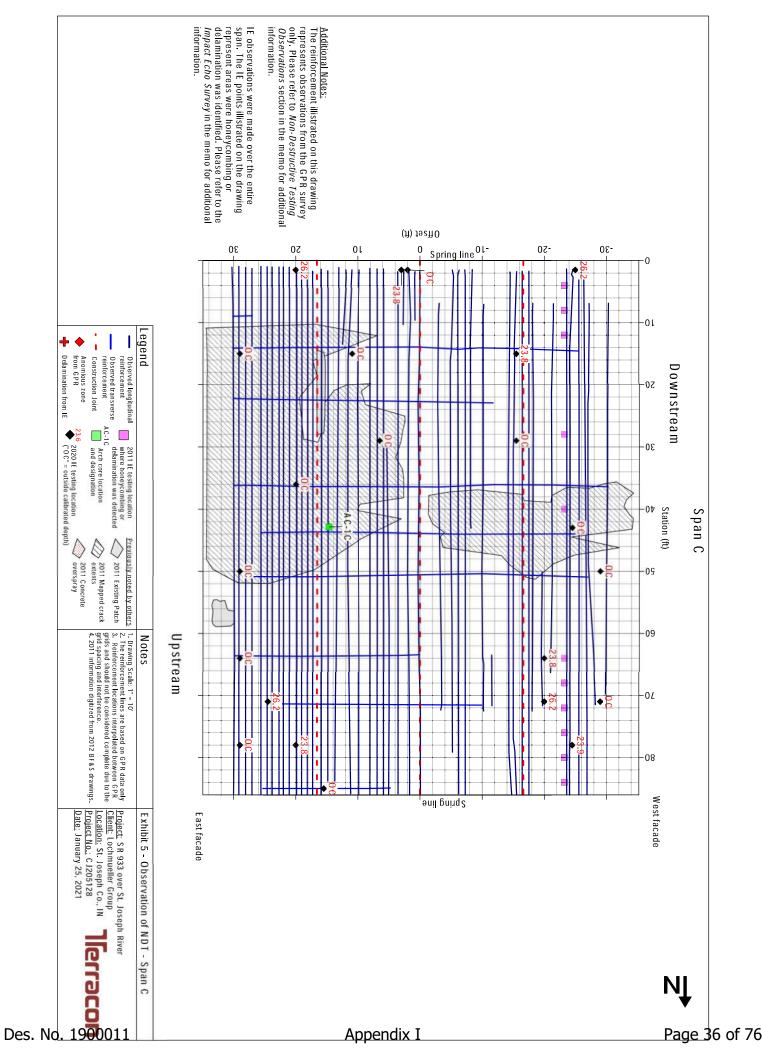
Sincerely, Terracon Consultants, Inc.


Stofe Bullenthi


Stephen Brellenthin, L.P.G. Senior Staff Geophysicist


Scott Zajac, P.E. Project Engineer


Attachments:


Exhibit 1 – NDT Survey Extents and Exploratory Locations Exhibit 2 - NDT Grid Layout Exhibit 3 – Observation of NDT – Span A Exhibit 4 – Observation of NDT – Span B Exhibit 5 - Observation of NDT - Span C Exhibit 6 - Spandrel Wall and Railing Test Core Locations Summary of Impact Echo Results Field Methods for Exploring and Sampling Soils and Rock Log of Test Boring (4) Core Photographs Grain Size Distribution Test Report Unconfined Compression Test (3) Concrete Core Test Report Laboratory Services Report Determining Water Soluble Chloride Ion Content in Soils Degree of Carbonation Using Phenolphthalein Staining

Appendix I

Summary of Impact Echo Results SR 933 over St. Joseph River St. Joseph County, Indiana

Span	Station* (ft)	Offset** (ft)	Direction**	Measured Concrete Thickness	Comments
Span A	1	11	Upstream	26.2 inches	Thicker than calibrated dep
Span A	1	20	Upstream	23.0 inches	
Span A	1	29	Upstream	23.8 inches	
Span A	15	11	Upstream	26.2 inches	
Span A	29	11	Upstream	Outside of calibration depth	Thicker than calibrated dep
Span A	36	20	Upstream	Outside of calibraiton depth	Thicker than calibration dep
Span A	36	29	Upstream	Outside of calibration depth	Thicker thsn calibration dep
Span A	43	2	Upstream	Outside of calibration depth	Thicker than calibrated dep
Span A	43	29	Upstream	Outside of calibration depth	Thicker than calibration dep
Span A	57	20	Upstream	Outside of calibration depth	Thicker than calibrated dep
	57	29			
Span A			Upstream	Outside of calibration depth	Thicker than calibration dep
Span A	64	20	Upstream	23.8 inches	
Span A	71	2	Upstream	26.2 inches	
Span A	78	20	Upstream	23.8 inches	
Span A	84.5	2	Upstream	Outside of calibaration depth	Thicker than calibration de
Span A	85	20	Upstream	Outside of calibration depth	Thicker than calibration de
Span A	36	11	Downstream	Outside of calibration depth	Thicker than calibration dep
Span A	43	31	Downstream	Outside of calibration depth	Thicker than calibration dep
Span A	50	11	Downstream	Outside of calibration depth	Thicker than calibration de
Span A	57	6.5	Downstream	Outside of calibration depth	Thicker than calibration de
Span A	57	31	Downstream	Outside of calibration depth	Thicker than calibration de
	71	6.5	Downstream		
Span A				Outside of calibration depth	Thicker than calibration dep
Span A	78	20	Downstream	23.8 inches	
Span A	85	6.5	Downstream	23.8 inches	
Span A	85	24.5	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	1.5	11	Upstream	26.2 inches	
Span B	1.5	30	Upstream	27.9 inches	
Span B	14	21	Upstream	26.2 inches	
Span B	22	12	Upstream	26.2 inches	1
		12			
Span B	35		Upstream	26.2 inches	Thiskes they are 20 12 1
Span B	35	20	Upstream	Outside calibration depth	Thicker than calibraiton de
Span B	42	10.5	Upstream	26.2 inches	
Span B	49	2	Upstream	26.2 inches	
Span B	56	31	Upstream	27.8 inches	
Span B	63.5	4	Upstream	Outside of calibration depth	Thicker than calibration de
Span B	70.5	13	Upstream	26.2 inches	
Span B	70	13	Upstream	26.2 inches	
	70.5	22	Upstream	28.7 inches	_
Span B					
Span B	78	11	Upstream	25.1 inches	
Span B	91.5	21	Upstream	25.2 inches	
Span B	105.5	12.5	Upstream	26.2 inches	
Span B	8	11	Downstream	28 inches plus	
Span B	15	15.5	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	29	24.5	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	43	24.5	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	50	11		Outside of calibration depth	Thicker than calibration de
			Downstream		
Span B	60	15.5	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	64	2	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	64	11	Downstream	23.8 inches	
Span B	71	6.5	Downstream	26.2 inches	
Span B	71	15.5	Downstream	26.2 inches	
Span B	71	24.5	Downstream	5.3 inches	Delamination detected
Span B	78	11	Downstream	26.2 inches	
Span B	78	27.5	Downstream	Outside of calibration depth	Thicker than calibration de
	92	27.5	Downstream	Outside of calibration depth	
Span B	92	24 5			Thicker than calibration de
Span B	00	1	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	106	11	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	113	15.5	Downstream	16.4 inches	Delamination detected
Span B	120	29	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	120	29	Downstream	Outside of calibration depth	Thicker than calibration de
Span B	71	30.5	Downstream	14.6 inches	Delamination detected
Span C	1.5	2	Upstream	Outside of calibration depth	Thicker than calibration de
Span C	1.5	20	Upstream	26.2 inches	
Span C	1.5	11	Upstream	Outside of calibration depth	Thicker than calibration de
Span C	15	29	Upstream	Outside of calibration depth	Thicker than calibration de
Span C		6.5	Upstream	Outside of calibration depth	Thicker than calibration de
A -	29				
Span C	36	20	Upstream	Outside of calibration depth	
Span C	36 50	20 29	Upstream	Outside of calibration depth	Thicker than calibration de
	36	20			Thicker than calibration de
Span C	36 50	20 29	Upstream	Outside of calibration depth	Thicker than calibration de
Span C Span C Span C	36 50 64 71	20 29 29 24.5	Upstream Upstream Upstream	Outside of calibration depth Outside of calibration depth 26.2 inches	Thicker than calibration de
Span C Span C Span C Span C	36 50 64 71 78	20 29 29 24.5 20	Upstream Upstream Upstream Upstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches	Thicker than calibration de Thicker than calibration de
Span C Span C Span C Span C Span C Span C	36 50 64 71 78 78 78	20 29 24.5 20 29	Upstream Upstream Upstream Upstream Upstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth	Thicker than calibration de Thicker than calibration de Thicker than calibration de
Span C Span C Span C Span C Span C Span C Span C	36 50 64 71 78 78 78 85	20 29 24.5 20 29 15.5	Upstream Upstream Upstream Upstream Upstream Upstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth	Thicker than calibration de Thicker than calibration de Thicker than calibration de
Span C Span C Span C Span C Span C Span C Span C Span C	36 50 64 71 78 78 85 1.5	20 29 24.5 20 29 15.5 3	Upstream Upstream Upstream Upstream Upstream Upstream Upstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches	Thicker than calibration de Thicker than calibration de Thicker than calibration de
Span C Span C Span C Span C Span C Span C Span C	36 50 64 71 78 78 85 1.5 1.5	20 29 24.5 20 29 15.5 3 25	Upstream Upstream Upstream Upstream Upstream Upstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches 26.2 inches	Thicker than calibration de Thicker than calibration de Thicker than calibration de
Span C Span C Span C Span C Span C Span C Span C Span C	36 50 64 71 78 78 85 1.5	20 29 24.5 20 29 15.5 3	Upstream Upstream Upstream Upstream Upstream Upstream Upstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches	Thicker than calibration de Thicker than calibration de Thicker than calibration de
Span C Span C Span C Span C Span C Span C Span C Span C Span C	36 50 64 71 78 78 85 1.5 1.5	20 29 24.5 20 29 15.5 3 25	Upstream Upstream Upstream Upstream Upstream Upstream Downstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches 26.2 inches	Thicker than calibration de Thicker than calibration de Thicker than calibration de Thicker than calibration de
Span C Span C	36 50 64 71 78 78 85 1.5 1.5 1.5 15 29	20 29 24.5 20 29 15.5 3 25 15.5 15.5 15.5	Upstream Upstream Upstream Upstream Upstream Upstream Downstream Downstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches 26.2 inches 23.8 inches Outside of calibration depth	Thicker than calibration de Thicker than calibration de Thicker than calibration de Thicker than calibration de Thicker than calibration de
Span C Span C	36 50 64 71 78 78 85 1.5 1.5 1.5 15 29 43	20 29 24.5 20 29 15.5 3 25 15.5 15.5 24.5	Upstream Upstream Upstream Upstream Upstream Upstream Downstream Downstream Downstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth	Thicker than calibration de Thicker than calibration de
Span C Span C	36 50 64 71 78 85 1.5 1.5 1.5 1.5 29 43 50	20 29 24.5 20 29 15.5 3 25 15.5 15.5 15.5 24.5 29	Upstream Upstream Upstream Upstream Upstream Downstream Downstream Downstream Downstream Downstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth Outside of calibration depth	Thicker than calibration de Thicker than calibration de
Span C Span C	36 50 64 71 78 78 85 1.5 1.5 1.5 1.5 15 29 43 50 64	20 29 29 24.5 20 29 15.5 3 25 15.5 15.5 15.5 24.5 29 20	Upstream Upstream Upstream Upstream Upstream Downstream Downstream Downstream Downstream Downstream Downstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth Outside of calibration depth 23.8 inches	Thicker than calibration de Thicker than calibration de
Span C Span C	36 50 64 71 78 85 1.5 1.5 1.5 1.5 29 43 50	20 29 24.5 20 29 15.5 3 25 15.5 15.5 15.5 24.5 29	Upstream Upstream Upstream Upstream Upstream Downstream Downstream Downstream Downstream Downstream	Outside of calibration depth Outside of calibration depth 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth 23.8 inches 26.2 inches 23.8 inches Outside of calibration depth Outside of calibration depth Outside of calibration depth	Thicker than calibration de Thicker than calibration de

* From south spring line on each span ** Relative to center construction joint

FIELD METHODS FOR EXPLORING AND SAMPLING SOILS AND ROCK

A. Boring Procedures Between Samples

The boring is extended downward, between samples, by a hollow stem auger (AASHTO* Designation T251), continuous flight auger, driven and washed-out casing, or rotary boring with drilling mud or water.

B. Standard Penetration Test and Split-Barrel Sampling of Soils

(AASHTO* Designation: T206)

This method consists of driving a 2-in. outside diameter split-barrel sampler using a 140-lb weight falling freely through a distance of 30 in. The sampler is first seated 6 in. into the material to be sampled and then driven 12 in. The number of blows required to drive the sampler the final 12 in. is recorded on the Log of Test Boring and known as the Standard Penetration Resistance or N-value. Recovered samples are first classified as to texture by the field personnel. Later in the laboratory, the field classification is reviewed by a geotechnical engineer who observes each sample.

C. Thin-walled Tube Sampling of Soils

(AASHTO^{*} Designation: T207)

This method consists of hydraulically pushing a 2-in. or 3-in. outside diameter thin wall tube into the soil, usually cohesive types. Relatively undisturbed samples are recovered.

D. Soil Investigation and Sampling by Auger Borings

(AASHTO^{*} Designation: T203)

This method consists of augering a hole and removing representative soil samples from the auger flight or bucket at 5-ft intervals or with each change in the substrata. Relatively disturbed samples are obtained and its use is therefore limited to situations where it is satisfactory to determine approximate subsurface profile.

E. Diamond Core Drilling for Site Investigation

(AASHTO^{*} Designation: T225)

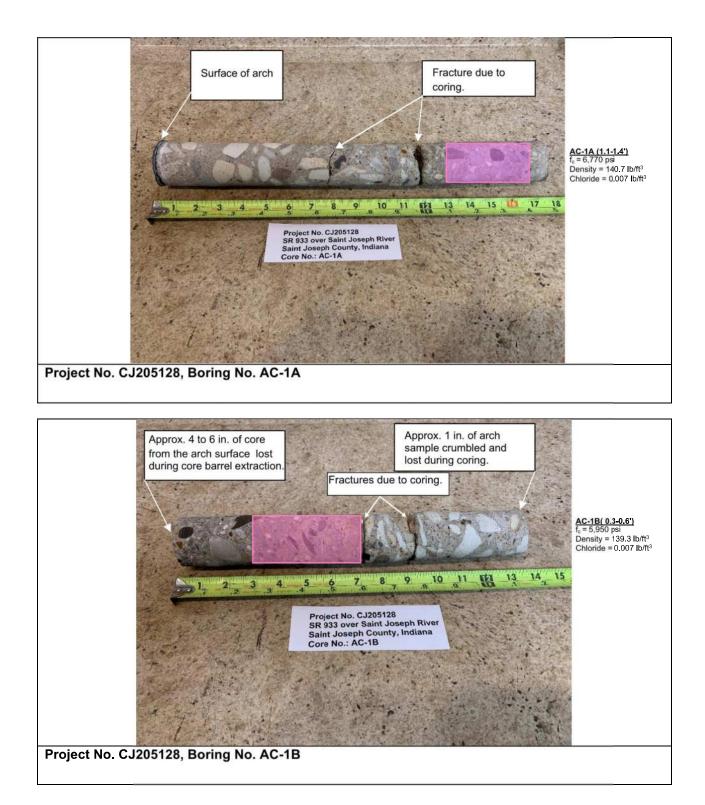
This method consists of advancing a hole in rock or other hard strata by rotating downward a single tube or double tube core barrel equipped with a cutting bit. Diamond, tungsten carbide, or other cutting agents may be used for the bit. Wash water is used to remove the cuttings. Normally, a 3-in. outside diameter by 2-in. inside diameter coring bit is used unless otherwise noted. The rock or hard material recovered within the core barrel is examined in the field and laboratory. Cores are stored in partitioned boxes and the length of recovered material is expressed as a percentage of the actual distance penetrated.

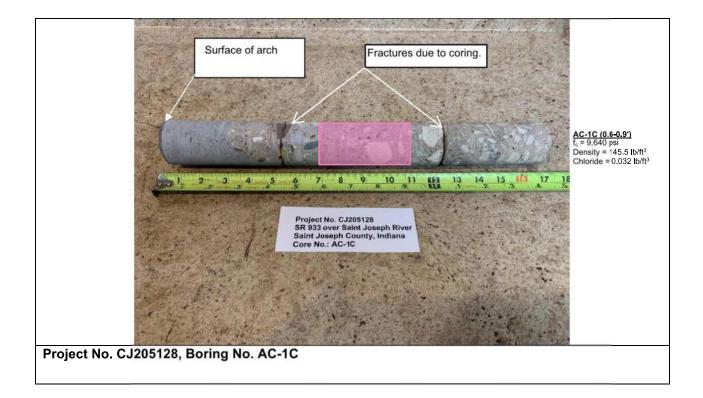
American Association of State Highway and Transportation Officials, Washington D.C.

			EC.			<u> </u>				BORI	NG			
earth Exploration		G OF T	C 3		JULING	7				SHEE				1OF3
A Terracon corres	CLIENT : Lochmueller Grou								_	LATIT				
	DES NO. : 1900011	STRUC	TURE	#: <u>(</u> 93	3) 31-71-3	690C			_	LONG			:	
	E: Bridge Assessment									DATU	JM :			WGS84
LOCATION	: SR 933 over St. Joseph Rive	er							_	DATE	ST	ART	ED	: 11-12-20
COUNTY	: St. Joseph	1	PROJ	JECT N	O.: CJ20	5128				DATE	CO	MP	LETE	D: 11-12-20
ELEVATION :		BORING M	1ETHC	DD : <u>H</u>	ollow Sten	n Auge	r*	_ н⁄	AMMEF	र	:_/	Auto		
	0+37 25.0 ft Right	RIG TYPE		:_C	ME 550 X				RILLER	/INSP	:	JP		
LINE :	'C'	CASING D	IA.	:	-			_ те	MPER	ATURE	:_4	15 °F	-	
DEPTH :	90.0 ft	CORE SIZI	E	:	-			W	EATHE	R	: F	air		
GROUNDWAT	ER: $\overline{\nabla}$ Encountered at <u>19.0 ft</u>	⊥ At co	omplet	ion <u>10.</u>	<u>0 ft</u>							驞	Cav	ed in at <u>37.2 ft</u>
ELEVATION SAMPLE DEPTH	SOIL/MATERIAL DES	CRIPTION		SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP , tsf			ERG S	REMARKS
	Asphaltic Concrete		XX	ωz	0.4	<u>× ~</u>	≥U			0		PL	PI	
	Asphaltic Concrete Portland Cement Concrete	<u>1.0</u> 1.6	X											
	Shane Somen Somere	1.0	· · · ·	ss	5-3-4	0								
2.5			 	1	0-0-4									
680.0			· · · ·	SS 2	2-1-2	67								
			· · ·	SS	2-3-3	33	12.3		0.75					
	Sand, very loose to loose, moi	st dark	· · · ·	3					0.50					
675.0 1 0.0	brown to brown below 11 ft, co near 6 and 10 ft, with sand sea ft, A-2-4 (0), Lab No. 29532	hesive	· · · ·	SS 4	2-3-7	0	11.4		0.75					
12.5			· · · ·	SS 5	1-2-3	100					NP	NP	NP	- 11.0, pH = 8.6, SG = 2.65
670.0			· · · ·	SS 6	1-2-2	100								
17.5		17.0	· · · · ·	SS 7	1-2-4	100								
665.0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SS 8	3-3-5	83								
22.5	Gravelly Sand, very loose to n	nedium	0.0.0.0	SS 9	2-2-3	100					NP	NP	NP	
660.0	dense, moist to wet below 19 f with sand seams near 18 and (0), Lab No. 29533	29 ft, A-1-b	0.0.0.0.0	SS 10	0-1-2	100								
27.5		5 		SS 11	2-2-3	100								
655.0		:		SS 12	3-7-13	100								

											BORI	NG I	NO.:		TB-1
	EARTH	DATION	LOG OF	TES	ΓB	ORING	İ				SHEE	T			2 OF <u>3</u>
	EAPLU	RATION	CLIENT : <u>Lochmueller Group, Inc.</u>							_	LATIT				
				CTURE	E #: <u>(</u> 93	3) 31-71-36	590C			_			DE :	:	
┢			E: Bridge Assessment						ď		DATL	<u>JM :</u>			WGS84
	ELEVATION				œ		RY	╏다	Y, pcf	<u>н</u> ч-	F. tsf	ATT	ERBI	ERG	
	EVAT	SAMPLE DEPTH	SOIL/MATERIAL DESCRIPTION		SAMPLE NUMBER	_ ¹ 0	OVE	STU	DRY DENSITY, I	POCKET PEN., tsf	UNCONF COMP , tsf				REMARKS
	ELE	SANDEF			SAN	SPT per 6"	% RECOVERY	MOISTURE	ЪЧ	ОЧ		LL	PL	ΡI	
	_	-		0	e										
	_		32.0	0.0.	>										
	-	32.5		+++++											
	650.0_			+++++	ss	3-5-8	100	047	100 F	25	1.00				
	-	35.0		+++++++++++++++++++++++++++++++++++++++	13	3-5-6	100	24.7	102.5	3.5 3.75	1.93				
	-			++++++											
	h			+++++											
	-	37.5		++++											– 38.0, pH = 8.1,
	645.0_			+++++++++++++++++++++++++++++++++++++++	SS	4-5-8	100			0.75		18	17	1	SG = 2.77
	-	40.0		++++	14					0.70					
	-			+++++++++++++++++++++++++++++++++++++++											
	-	42.5		++++											
	-	42.5		+++++											
	640.0	\mathbb{N}		++++	SS	2-4-5	100	22.6	106.4	2.75	1.11				
	-	45.0		+++++	15					2.5					
	-			++++											
	-	47.5		+++++											
	-			+++++											
	635.0—		Silty Loam, medium stiff to hard, moist, gray, with sand seams near 29, 60 and,	+++++	SS 16	2-4-5	100		104.6						
	-	50.0	69 ft, A-4 (0), Lab No. 29534	+++++						3.0					
	-			++++++											
21	-	52.5		+++++++++++++++++++++++++++++++++++++++											
1/13/	-			++++											
I.GDT	630.0—	1 = 10		+++++++++++++++++++++++++++++++++++++++	SS 17	2-3-4	100	22.7	106.4	2.5 2.0	0.66	27	17	10	
DOT	-	55.0		++++						2.0					 * 55.0, Begin rotary drilling
N N	-			+++++++++++++++++++++++++++++++++++++++											, ,
128.GF	-	57.5		++++											
CJ205	-			+++++++++++++++++++++++++++++++++++++++											
DN	625.0			++++	SS 18	2-5-25	100			1.75 1.25					
<u>11./LO</u>	-	60.0		+++++++++++++++++++++++++++++++++++++++						1.20					
AT) LA	-			++++											
ORM,	-	62.5		+++++++++++++++++++++++++++++++++++++++											
DOTF	- 620.0—	1 1		++++											
INI) Do	ozu.U—	65.0		+++++++++++++++++++++++++++++++++++++++	SS 19	5-8-16	100	16.1		2.0 1.25					
EEI BORING LOG (INDOT FORMAT) LAT /LONG. CJ205128.GPJ IN_DOT1.GDT 1/13/21	-			++++											
BOR				++++											
			Continued on next page)											

Γ											BORI	NG	NO.:		TB-1
	EARTH	DATION	LOG OF 1	ΓES	ТВ	ORING	i				SHEE	T			3OF3
	EXPLU	RATION	CLIENT :Lochmueller Group, Inc							_	LATI				
	\rightarrow			TURE	E #: <u>(</u> 93	3) 31-71-36	690C			_	LONG		DE :	:	
┝	PROJE		E: Bridge Assessment						بو		DATL	JM :			WGS84
	ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DESCRIPTION		SAMPLE NUMBER	و" _	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP., tsf	ATT	ERBI .IMIT:	ERG S	REMARKS
	ELE	SAI			SAN	SPT per 6"	% RE(О Ч О И О	DE	PO	N N N N	LL	PL	ΡI	
	- - 615.0 - -		Silty Loam, medium stiff to hard, moist, gray, with sand seams near 29, 60 and,	+ +	20	13-16-15	100			1.0					
	- - 610.0– - -	72.5	69 ft, A-4 (0), Lab No. 29534	+ + + + + +	SS 21	17-24-24	100	18.8		0.75 1.0		22	11	11	
	- - 605.0 - -	77.5			SS 22	26-15-18	100								
	- - 600.0– -	82.5-	Sand, dense, wet, gray, A-2-4, Lab No. 29532		SS 23	15-19-23	100								
3DT 1/13/21	- - 595.0 -	87.5	88.0 Sandy Gravel, dense, wet, gray, (visual) 90.0 Bottom of Boring at 90.0 ft		SS 24	18-16-19	100								
3. CJ205128.GPJ IN DOT1.C	- - 590.0 -	92.5													
EI BORING LOG (INDOT FORMAT) LAT /LONG. CJ205128.GPJ IN_DOT1.GDT 1/13/21	- 585.0 - -	97.5 97.5 100.0 100.0													
BORING	-	102.5													

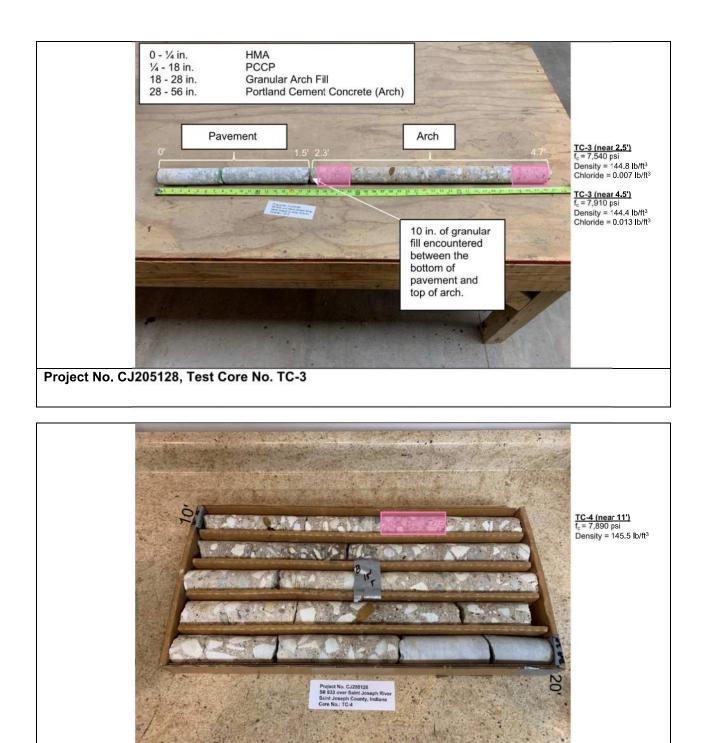

											BORI	NG	NO.:	:	TC-2
EARTH	DATION		G OF 7	ΓES	ΤB	ORING					SHEE	T		_	1OF2
EXPLU	RATION	CLIENT : Lochmueller Grou	ıp, Inc.							_	LATI	rudi	E :		41.68792
		DES NO. : 1900011	STRUC	CTURE	: #: <u>(</u> 93	33) 31-71-36	90C			_	LONG	SITU	JDE :	:	-86.25051
PROJE	ECT TYP	PE: Bridge Assessment								_	DATU	JM :			WGS84
LOCA	ΓΙΟΝ	: SR 933 over St. Joseph Rive	er							_	DATE	ST	ART	ΈD	:11-04-20
COUN	TY	: St. Joseph	1	PRO	JECT I	NO.: CJ205	128				DATE	E CC	MPL	ETE	ED: 11-05-20
	TION :	684.0	BORING	METH	DD : <u> </u>	Hollow Stem	Auge	er	_ н/	AMME	२	:_/	Auto		
STAT		25.0 ft Right	RIG TYPE	1	:_[D-50				RILLEF	R/INSP	:	JS		
LINE	:	'C'			:				_ TE	MPER	RATURE	: <u> </u>	<u>70 °F</u>	:	
DEPTH		38.0 ft				NQ2			W	EATHE	ER	: F	-air		
GROU	NDWAT	ER: $\overline{\nabla}$ Encountered at <u>Dry</u>	⊥ At c	omplet	tion <u>Dr</u>	Х									
ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DES	CRIPTION		SAMPLE NUMBER	0.	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP , tsf		ferbi Limit:		REMARKS
	DEP				SAN	SPT per 6"	SEC.	NON	DRY DERY	Р М М М М	NO NO	LL	PL	Ы	
		Asphaltic Concrete	0.3												
-		Portland Cement Concrete	1.2	8 4 4 0 0											
-	2.5			0.0	SS 1	28-16-26-22	13								
-				0.0.0											
680.0_	H -1X			0.0	SS 2	41-27-20-17	17								
-	5.0_	Sand and Gravel, (fill), (visual)		· · · · · ·	SS	50/2"	0								
-				0.0	3	00/2									
-				0.00	ss	50/3"	100								
_	7.5			0.0. 	4	00/0									
675.0_			8.5	0 0 C											– 9.0, <i>f_c</i> = 5,280
0/0.0	- 10.0			* 4 4 4 4 4											psi, density =
-	- 10.0			7 4 4 A	RC 1										141.4 pcf, chlo- ride = 0.013 pcf
-				A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RQD= 97%	:	100								nde – 0.010 pci
-	12.5			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 57 /0										
-		Portland Cement Concrete, m	ax	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	•										
670.0_		aggregate size 1.0", fractured i 9.5', 12.6', 13.8', 14.3', 14.9', 1	5 4', 15 8',		•										
-	15.0	16.2', 17.1', 17.6', 18.8'			RC										
- 12/0				A 4 4 4 4 4 4 7 4 7 4 7 7	2 RQD=		100								
-				444	97%										
- 1	17.5			A 4 4											
665.0_			19.3	A 4 4 A 4 4 A 4 4	-										
-	- 20.0	Limestone, fractured near 19.													
0.07		19.5', 19.8', 20'	20.8		RC 3		98								
0					RQD= 78%		30								
5	22.5	Portland Cement Concrete, m													
		aggregate size 1.0", fractured i 22.8', 23.9'	near 21.8',	4 4 0 9 4 4 9 4 4											
660.0_		,		4 4 4 4 4 4 4											
- 10	25.0	Limestens freshured sectors	25.4		RC										
- 12		Limestone, fractured near 25.7	26.2		4 RQD=		98								
	27.5_			4 4 4 4 4 4 4	90%										
- 25		Portland Cement Concrete, m aggregate size 1.0", fractured r	ax near 26.6',	4 4 4 4 4 4 4 4 4											
		27.4', 27.8', 29', 29.5', 30'	·	8 4 4 8 4 4											
	30.0		30.0												
ā		Continued of	on next page												


										BORI	NGI	NO.:		TC-2
EAF	RTH		LOG OF TES	TB	ORING	j				SHEE	Т			2 OF 2
	201	RATION	CLIENT :Lochmueller Group, Inc						_	LATIT				
		i	DES NO. : 1900011 STRUCTURI	E #: <u>(93</u>	33) 31-71-36	590C			_	LONG			:	
PRO	DJE	CT TYF	E: Bridge Assessment					5		DATU	JM :			WGS84
ELEVATION		SAMPLE DEPTH	SOIL/MATERIAL DESCRIPTION	SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP., tsf	L			REMARKS
		2 N D	K.27 K.28	S RC	Pe SF	82	Σö	55	28	Ξŭ	LL	PL	ΡI	
650	-	- - - - - - - - - - - - - - - - - - -	Portland Cement Concrete, max aggregate size 1.0", fractured near 31.1', 31.8', 32.1', 32.8', 33.3', and 33.9'; fractured in pieces near 28.4'-28.8', 30'-30.4', 32.1'-32.4', and 34.3'-34.6'; voided with possible weathering near 30'-31.1' and 32.4'-32.8' 35.0 Sand, (visual)	RQD= 61% 6 RQD= 81%		92								 34.0, f_c = 2,010 psi, density = 142.1 pcf, chlo- ride = 0.007 pcf
645	- - .0_	37.5	Clay, medium stiff, moist, gray, A-7-6 (25), Lab No. 29535 38.0 Bottom of Boring at 38.0 ft	SS 5	2-3-4-5	75	30.9 27.9				44	20	24	35.0, Sand de- scription based on driller's experi- ence and pres- ence in core bar-
640	- - - - - -	40.0 42.5 45.0 47.5 50.0												rel. No dis- cernible indica- tion of a void. 36.0, pH = 7.9, SG = 2.77, soluble sulfate = 240 ppm, LOI = 1.1%
EEL BORING LOG (INDOI FORMAI) LAL/LONG. CJ205128.GPJ IN_D011.GD1 7/13/21	- - - - -	52.5 55.0 57.5 60.0												
	- .0_	- - - - - - - - - - - - - - - - - - -												

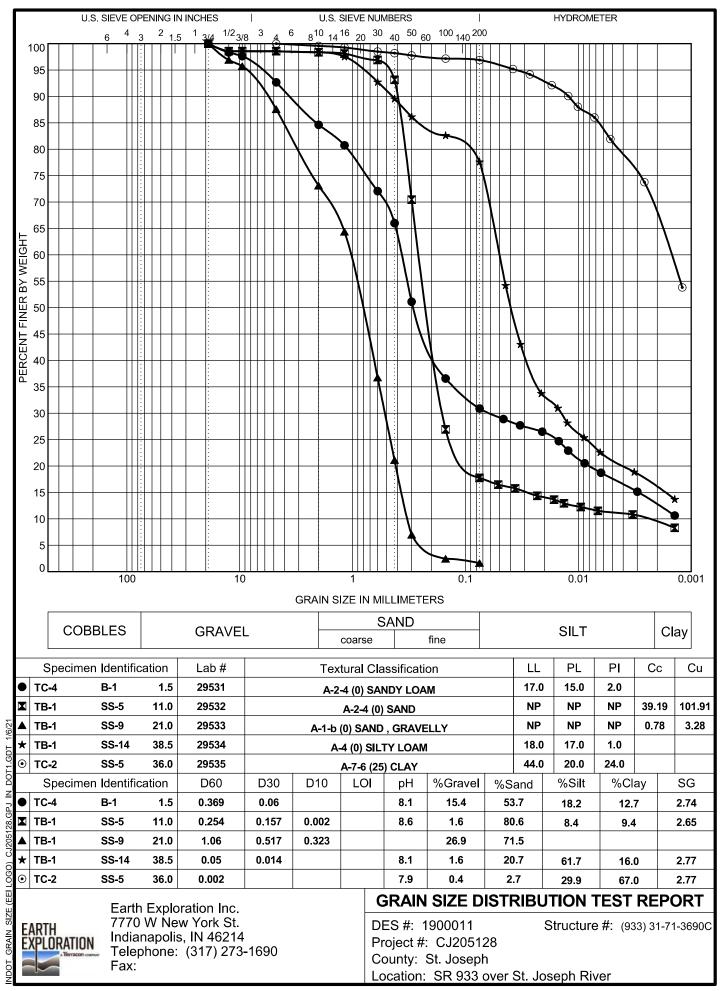
									BOR	ING NC).:	TC-3
EARTH			G OF TES	T B	ORING	Ì			SHE	ΞT	_	1OF1
EXPLO	RATION	CLIENT : Lochmueller Grou	p, Inc.						LATI	TUDE :	_	41.68810
		DES NO. : 1900011		E #: <u>(</u> 93	33) 31-71-30	590C			LON	GITUDE	≣:	-86.25051
PROJE	ECT TYP	PE: Bridge Assessment							DATI	JM :	_	WGS84
LOCAT	ION	: SR 933 over St. Joseph Rive	r						DATE	E STAF	TED	: 11-05-20
COUN	TY	: St. Joseph	PRO	JECT	NO.: CJ205	5128		1	DATE	E COM	PLET	ED: 11-05-20
ELEVA	TION :	684.0	BORING METH	OD :				HAMN	ER	:_Aut	.0	
STATIC			RIG TYPE					DRILL	ER/INSP	:_JS		
OFFSE		25.0 ft Right 'C'	CASING DIA.	:				TEMP	ERATURE	E : <u>70</u>	°F	
		4.7 ft						WEAT	HER	: Fai	r	
GROU	NDWAT	ER: ∇ Encountered at <u>Dry</u>	${ar \Psi}$ At comple	tion <u>Dr</u>	У							
ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DESC	CRIPTION	SAMPLE NUMBER	6"	% RECOVERY	MOISTURE CONTENT	DENSITY, pcf POCKET	PEN , TST UNCONF COMP , TSf	ATTER		REMARKS
ELE	SAI			SAN	SPT per 6"	% REC	U C O M O M O		Ξ ŽΟ	LL P	L PI	
		Asphaltic Concrete	0.3									
-	-	Portland Cement Concrete, fra near 0.5" and 1.5"										 0.6, Steel reinforcement near 0.6 ft
_	2.5—	Sand, (fill, visual)	2.3	RC 1 RQD= 100%		100						 2.5, f_c = 7,540 psi, density =
- 680.0	_	Portland Cement Concrete										144.8 pcf, chlo- ride = 0.013 pcf
-	- 5.0 -	Bottom of Boring at 4.7	4.7 ft									 4.5, f_c = 7,910 psi, density = 144.4 pcf, chlo- ride = 0.013 pcf
	7.5											
675.0_												

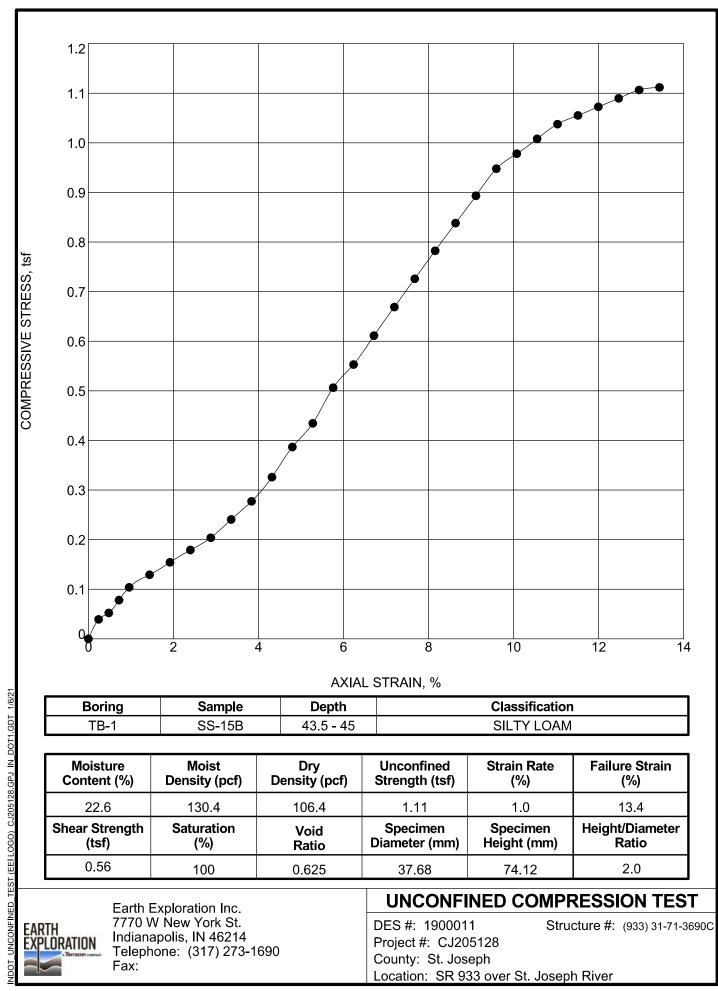
$\begin{array}{c} 2.5 \\ 600.0 \\ 6.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 7.5$			10					`				BORI	NGI	NO.:		TC-4
CALING:					E21	BC		5								
PROJECT TYPE: Bridge AssessmentDATUM:WGS84LOCATION:SR 933 over SL Joseph RiverDATE STARTED::11-09-20COUNTY:SL Joseph RiverPROJECT NO:CJ205128DATE COMPLETED:11-09-20COUNTY:SL Joseph RiverBORING METHOD:Hollow Stem AugerHAMMER:AutoSTATION::::::OFFSET::::::::INNE:::::::::	CAPLU	A Tierracon com									_					
LOCATION: SR 933 over \$L Joseph RiverDATE STARTED: 11-09-20COUNTY: SL JosephPROJECT NO.: CJ205128DATE COMPLETED.: 11-09-20ELEVATION: 684.0BORING METHOD: Holiow Stem Auger ING TYPEHAMMER: AutoOFFSET: 25.0 ft Right: Completion DirCASING DIA.: CORE SIZE: NQ2BORUNDWATER: \searrow Encountered at Dry \checkmark At completion DryWEATHER: CloudySOIL/MATERIAL DESCRIPTION $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ 880.0SOIL/MATERIAL DESCRIPTION $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ $\frac{10}{100}$ 90.090.090.0 <td< td=""><td></td><td></td><td></td><td>_ STRUCI</td><td>TURE</td><td>#: <u>(</u>933</td><td>3) 31-71-3</td><td>690C</td><td></td><td></td><td>_</td><td>LONG</td><td>SITU</td><td>DE</td><td>:</td><td></td></td<>				_ STRUCI	TURE	#: <u>(</u> 933	3) 31-71-3	690C			_	LONG	SITU	DE	:	
COUNTY : SL Joseph PROJECT NO.: CJ205128 DATE COMPLETED : 11-09-20 ELEVATION : 684.0 BORING METHOD : Hollow Stem Auger HAMMER : Auto OFFSET : 250 ft Right CASING DIA. : D-50 DRILLER/INSP : JS UINE : 'CC CASING DIA. : CORE SIZE : NO2 TEMPERATURE : Cloudy GROUNDWATER: Image: Concrete in the image: Concrete i											_					
ELEVATION : 684.0BORING METHOD : Hollow Stem AugerHAMMER : AutoOFFRET : 25.0 ft RightCONTREMENTION : CONTREMENTION : CONTREMENT: CONTREME											_					
STATION OFFSETRIG TYPE 25.0 ft Right CORE SIZED-50DRILLER/INSPJSOFFSETCORE SIZENO2DEPTHSIGTYPE CORE SIZED-50TEMPERATUREZGROUNDWATER:VEATHERCOLDUCSOIL/MATERIAL DESCRIPTIONUSUSSOIL/MATERIAL DESCRIPTIONUSSOIL/MATERIAL DESCRIPTIONUSSOIL MATERIAL DESCRIPTIONSSOIL MATERIAL DESCRIPTIONSSOIL MATERIAL DESCRIPTIONSSOIL MATERIAL DESCRIPTIONS <td>COUN</td> <td>TY</td> <td>: St. Joseph</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>CO</td> <td>MPL</td> <td>ETE</td> <td>D: 11-09-20</td>	COUN	TY	: St. Joseph							-			CO	MPL	ETE	D: 11-09-20
OFFSET 25.0 ft Right LINEN3 TPE 20.0 DOULDENNIST 33.0 LINETCCASING DIATEMPERATURE: 75 F DEPTH38.0 ftCORE SIZENO2WEATHERCloudyGROUNDWATER: \checkmark Encountered at Dry \checkmark A completion Dry \checkmark \downarrow			684.0	BORING M	ETHO	D : <u>H</u>	ollow Ster	n Auge	r	_ HA	MMEF	२	:_/	Auto		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			25.0 ft Right	RIG TYPE		: <u>D</u> -	-50			-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $:	'C'							-			:_7	′5 °F	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1						W	EATHE	R	: 0	Clou	dy	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GROU	NDWAT	ER: \checkmark Encountered at <u>Dry</u>	⊥ At co	mpletio	on <u>Dry</u>										
Asphaltic Concrete 0.3 Asphaltic Concrete Asph	EVATION	AMPLE EPTH	SOIL/MATERIAL DES	CRIPTION		MPLE JMBER	יד ור 6"	COVERY	DISTURE	RY ENSITY, pcf	DCKET EN., tsf	VCONF OMP., tsf				REMARKS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ш	20	Asukaltia Cananata			<u>จัฮ</u>	R P	82	žδ		A H	Ξŭ	LL	PL	ΡI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		Portland Cement Concrete													
$\begin{array}{c} 680.0 \\ 680.0 \\ \\ 670.0 \\ \\ 12.5 \\ 10.0 \\ \\ 12.5 \\ 10.0 \\ 10.0 \\ 12.5 \\ 10.0 \\ $	-	2.5		1.5		SS 1	50/3	100								Hit obstruction at 2.5 ft. Offset 1 ft north
$\begin{array}{c} 675.0 \\ 677.0 \\ 10.0 \\ 12.5 \\ 12.5 \\ 15.0 \\ 15.0 \\ 15.0 \\ 15.0 \\ 15.0 \\ 20.0 \\ $	680.0_ - - -	100000		2-4(0),	 · · · · · · · · · · · · · · · · · · ·								17	15	2	- Bucket sample of auger cuttings 1.5 to 10 ft, solu- ble sulfate = 260 ppm, pH = 8.1, SG = 2.74. chlo- ride = 8,000 ppm
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	- 675.0_ - -	100000		10.0												- 11.0, <i>f</i> _c = 7,890
$\begin{array}{c} 665.0 \\ - \\ 20.0 \\ - \\ 20.0 \\ - \\ 20.0 \\ - \\ 20.0 \\ - \\ 20.0 \\ - \\ 20.0 \\ - \\ 20.0 \\ - \\ 20.0 \\ - \\ 19.7, 20.3' \\ \hline \\ 19.7, 20.3' \\ \hline \\ 20.3 \\ - \\ 20.3 \\ \hline \\ 19.2 \\ 20.3 \\ \hline \\ 100 \\ \hline \\ RC \\ 3 \\ RQD \\ 96\% \\ \hline \\ 100 \\ \hline \\ RC \\ 3 \\ RQD \\ 96\% \\ \hline \\ 100 \\ \hline \\ \\ 100 \\ \hline \\ \\ - \\ 25.0 \\ - \\ 25.5 \\ f_c = 5,260 \\ \hline \\ \end{array}$	- - 670.0		aggregate size 1.0", fractures r	near 10.6', 🛛 🛛		1 RQD=		100								psi, density = 145.5 pcf
$\begin{array}{c} 660.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.0 \\ -25.5 \\$	- - 665.0—					2 RQD=		100								
aggregate size 1.0", fractures near 21.5', 21.7', 22.8', 23.6', 24.6', and 28.5'	- - - 660.0—		19.7', 20.3'	20.3		3 RQD=		100								
RC 143.8 pcf, chlo-	-		aggregate size 1.0", fractures r	near 21.5', 📲		4 RQD=		100								 25.5, f_c = 5,260 psi, density = 143.8 pcf, chlo- ride = 0.013 pcf
655.0	655.0															

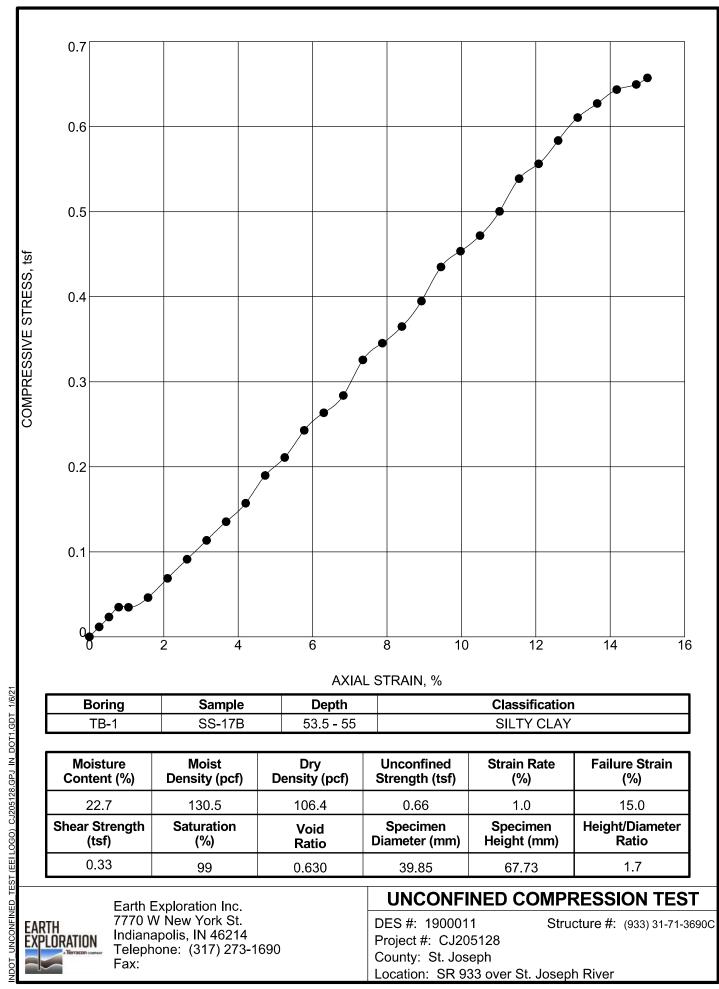
										BORI	NGN	10.: _	TC-4
	EARTH	RATION	LOG OF TES	ST B	ORING					SHEE	Т	_	2OF2
	EXPLO	ATTERNAL CONTRACTOR	CLIENT : Lochmueller Group, Inc.						_	LATIT	UDE	: _	41.68827
			DES NO. : 1900011 STRUCTUR	E #: <u>(93</u>	3) 31-71-36	90C			_	LONG	SITU	DE : _	-86.25052
	PROJE	CT TYP	E: Bridge Assessment	_						DATU	IM :		WGS84
	ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DESCRIPTION	SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP , tsf			REMARKS
	- - 650.0—	- - - - - - - - - - - - - - - - - - -	Portland Cement Concrete, max aggregate size 1.0", fractures near 21.5', 21.7', 22.8', 23.6', 24.6', and 28.5' 35.0	RC 5 RQD= 96%		100							 - 33.0, f_c = 6,430 psi, density = 146.8 pcf, chlo- ride = 0.007 pcf
	-	37.5	Sand, (visual) 36.0 Clay, soft, grey (visual) 38.0	ss 2		0							_ 35.0, Sand de- scription based on driller's expe- rience and pres- ence in core bar-
	645.0— -	- - 40.0 -	Bottom of Boring at 38.0 ft										rel. No dis- cernible indica- tion of a void.
	- - 640.0 - - - -	42.5											36.0, Cohesive soil present on core barrel and shoe of split spoon. Two attempts made to recover sample. SPT values not recorded but ap- proximately one- half of those recorded at TC-2 based on driller's notes.
1/13/21	635.0— - - -	- 50.0_ - - - 52.5_ - -											
28.GPJ N DOT1.GDT	630.0— - -	- - - - - - 57.5_											
MAT) LAT /LONG CJ205	- 625.0— - -	- - - 60.0 - - - - -											
EEI BORING LOG (INDOT FORMAT) LAT /LONG. CJ205128.GPJ IN_DOT1.GDT 1/13/21	- 620.0— - -	62.5											



Project No. CJ205128, Test Core No. TC-4 10'-20'







The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. full without the written consent of our company. Test results transmitted herein are only applicable to the	Fracture Type: Type 1 - Reasonably well-formed cones on both ends Type 2 - Well-formed cone on one end, vertical cracks running through caps Type 3 - Columnar vertical cracking through both ends Type 4 - Diagonal fracture	Comments: - Cores were tested dry Cores were smooth cut at both ends and capped Test location is referenced from underside surface of the arch for Test Cores AC-1A through AC-1C and the top of pavement for Test Cores TC-2 through TC-4.	10 TC-4 Near 33'	9 TC-4 Near 25.5'	8 TC-4 Near 11'			5 TC-2 Near 34'	$3 ext{ AC-1C 0.6-0.9'}$			ID Location	Core	Laboratory Test Data	Specified Length: Mix ID: NA Nominal Maximum Size Aggregate:	Specified Strength:	Material Information	South Bend, IN 46601	112 West Jefferson Blvd. Suite 500	Attn: Michael Vereb	Client	Task: Laboratory Services	Report Date: 01/14/21	Report Number: CJ205128.0002	Concrete Core Test Report
<u>м</u>	ell-formed cones on bot one on one end, vertical ical cracking through bo ure	at both ends and cappe ced from underside surf										(III)	Length	Cored	jate:							vices			ort
e ASTM, AA nsmitted he	n ends cracks runi th ends	ace of the a	3.60	3.72	3.68	3.68	3.69	3.76	3.70	3.71	3.69	(III)	Length	Trim											
SHTO, or Do rein are only	ning through	rch for Test (3.76	3.87	3.91	3.93	3.83	3.94	3.91 3.01	3.91	3.86	(III)	Length	Capped											
OT test meth applicable t	caps	Cores AC-1/	1.98	1.98	1.98	1.98	1.98	1.97	1.96	1.95	1.96		Diam.												
ods. This roots the actual		A through A(3.08	3.08	3.08	3.08	3.08	3.05	3.02	2.99	3.02	(sq in)	Area												
with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of		C-1C and the top of	1.90	1.95	1.97	1.98	$\frac{1.93}{1.93}$	2.00	1.99	2.01	1.97	Diam. Katio	Length /		Date Tested:12/21/20Sampled By:Scott, ZajacDrill Directions:Other - See CcDate Core Obtained:10/01/20Date Ends Trimmed:12/16/20Moisture Conditioning History:	Placement Date:	Sample Info	Project Numl	St. Joseph Co., IN	Des No. 1900011	Project				
for the use of the location(s		f pavement fo	19720	16170	24230	24270	23170	6130	16100	018/1	20440	(Ibs)	Max Load		12/21/20 Scott, Zajac ns: Other - See otained: 10/01/2 immed: 12/16/2 Iditioning Histor	ite: Early1900's	Information	Number: CJ205128	0., IN	. 1900011	J - -				
f the client in) referenced		r Test Cores	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	Factor			Ĭ	900's	_	28							
dicated above a and are not nec		TC-2 through T	6400	5250	7870	7880	7520	2010	5260 9660	0960	6770	(psi)	Strength	Comp.	ording to							317-273-1690	Indiana	7770 W	EARTH
and shall not be ressarily indica		Ċ <u>4</u>	2	3	2	2	ω	یں ر	2 2) N	ა	Iype	Fracture		Time: 0000 Time: 0000 Time: 0000 ASTM C-42							3-1690	Indianapolis, IN 46214-2988	7770 W New Vork St	ARTH XPLORATION® A Terracon company
e reproduced tive of the pr			146.8	143.8	145.5	144.4	144.8	142.1	145.5	139.3	140.7	(pcl)	D										:14-2988	4	COMPANY
d except in roperties of			ССВ	ССВ	CCB	ССВ	CCB	CCB	CCB CCB	CCB	CCB	, Ву	Tested												
. No.	1900011	I									Ap	pe	endi	ix]	I			I			F	ll Pag	e 59	9 of	76

CR0004, 11-16-12, Rev.5

Page i of 2

De

Lochmueller Group Inc Attn: Michael Vereb 112 West Jefferson Blvd. Suite 500 South Bond IN 46601	Client	Concrete Core Test ReportReport Number:CJ205128.0002Service Date:01/14/21Report Date:01/14/21Task:Laboratory Services
SR 933 Bridge Rehab Des No. 1900011 St. Joseph Co., IN	Project	T770 W New York St Indianapolis, IN 46214-2988 317-273-1690

Services: Earth Exploration, Inc. Rep.: Curtis Bradburn Cette C. Crockwon Reported To: Contractor: Report Distribution: (1) Lochmueller Group Inc, Michael Vereb

Reviewed By:

Scott, Zajac

Test Methods: ASTM C39, ASTM C42, ASTM C174

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CI205128 CI205128 CI205128 CI205128 efferson Blvd. I, IN 46601 I, IN 46601 I, IN 46601 I, IN 46601 I Lab No. Sam e ID Lab No. Sam f C 6 C 6 C 7 2 8 3 10 4 12 4 13	ORATORY SERVICES REPORT tNumber: N120MLAB.0174 e Date: 01/05/21 e Date: 01/13/21 Revision 1 - Addition Data Added CJ205128 Int muller Group Inc. West Jefferson Blvd. 500 h Bend, IN 46601 Project No. boratory Test Data Percent C AC-1A 4 1.1'-1.4' AC-1B 5 0.3'-0.6' 0.00 AC-1C 6 0.6'-0.9' 0.00 TC-2 7 9' 0.00 TC-2 8 34' 0.00 TC-3 10 4.5' 0.00 TC-4 12 25.5' 0.00	 eported To: ontractor:	eported To: ontractor: eport Distribution	Reported To: Contractor: Report Distribution
face Dr b/ft ³	611 Lunken Pari Cincinnati, OH 4 513-321-5816 513-521-5816 face Dry Density, b/ft ³			

LABORATORY SERVICES REPORT

 Report Number:
 N120MLAB.0174

 Service Date:
 01/05/21

 Report Date:
 01/11/21

 Task:
 CJ205128

Client

Lochmuller Group Inc. 112 West Jefferson Blvd. Suite 500 South Bend, IN 46601 **Therefore** 611 Lunken Park Dr Cincinnati, OH 45226-1813 513-321-5816

Project

SR 933 Bridge Rehab Des No. 1900011 St. Joseph Co., IN

Project No. N120MLAB Task No. CJ205128

Determining Water-Soluble Chloride Ion Content in Soils-AASHTO T 291-94

SAMPLE INFORMATION

Sample Type: Sample Location: Bag

Lab Number	Hole Numer	Sample Number	Sample Depth	Chloride Concentration, ppm
14	TC-4			8000

Services: Terracon Rep: Reported To: Contractor: Report Distribution

Reviewed By:

Stewart Abrams Staff Geologist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Des. No. 1900011

Appendix I Page 1 of 1

METHODOLOGY

Phenolphthalein stain was applied to broken surfaces of each core. Phenolphthalein is a pH indicator which turns from colorless to magenta at about a pH of 9-10. When the stain remains colorless after application, the concrete is usually carbonated and maintains a pH below 9.

Photographs of the cores after stain application are included in below.

Responsive Resourceful Reliable

Photo 1: Broken surfaces of Core AC-1A (1.1'-1.4') after application of phenolphthalein stain. Areas not stained magenta are carbonated. No Carbonation apparent.

Photo 2: Broken surfaces of Core TC-2 (32') after application of phenolphthalein stain. Areas not stained magenta are carbonated. No Carbonation apparent.

Responsive Resourceful Reliable

Photo 3: Broken surfaces of Core TC-3 (2.5') after application of phenolphthalein stain. Areas not stained magenta are carbonated. No Carbonation apparent.

Photo 4: Broken surfaces of Core TC-4 (33') after application of phenolphthalein stain. Areas not stained magenta are carbonated. No Carbonation apparent.

Responsive Resourceful Reliable

February 24, 2021

Ms. Katlyn Shergalis, P.E. Lochmueller Group 3502 Woodview Trace, Suite 150 Indianapolis, IN 46268

RE: Memorandum No.3 Geotechnical Boring near North Abutment SR 933 over St. Joseph River Saint Joseph Co., Indiana EEI Project No. CJ205128

Dear Katlyn:

Terracon performed a soil boring (Boring TB-2) near the north abutment of the SR 933 bridge over the St. Joseph River. Boring TB-2 was performed on January 21, 2021 near the centerline of SR 933. The approximate location of Boring TB-2 is shown on Exhibit 1. The soil boring location was determined in the field by Terracon personnel referencing physical features on the bridge and marked utilities. Constraints associated with traffic control, buried utilities, and pedestrian access limited where the boring could be safely performed. Details of the drilling and sampling procedures are attached. The borehole was backfilled with auger cuttings and capped with a concrete patch. The log for Boring TB-2 is attached. The ground surface elevation noted on the boring log was estimated based on topographic information depicted on historic plans.

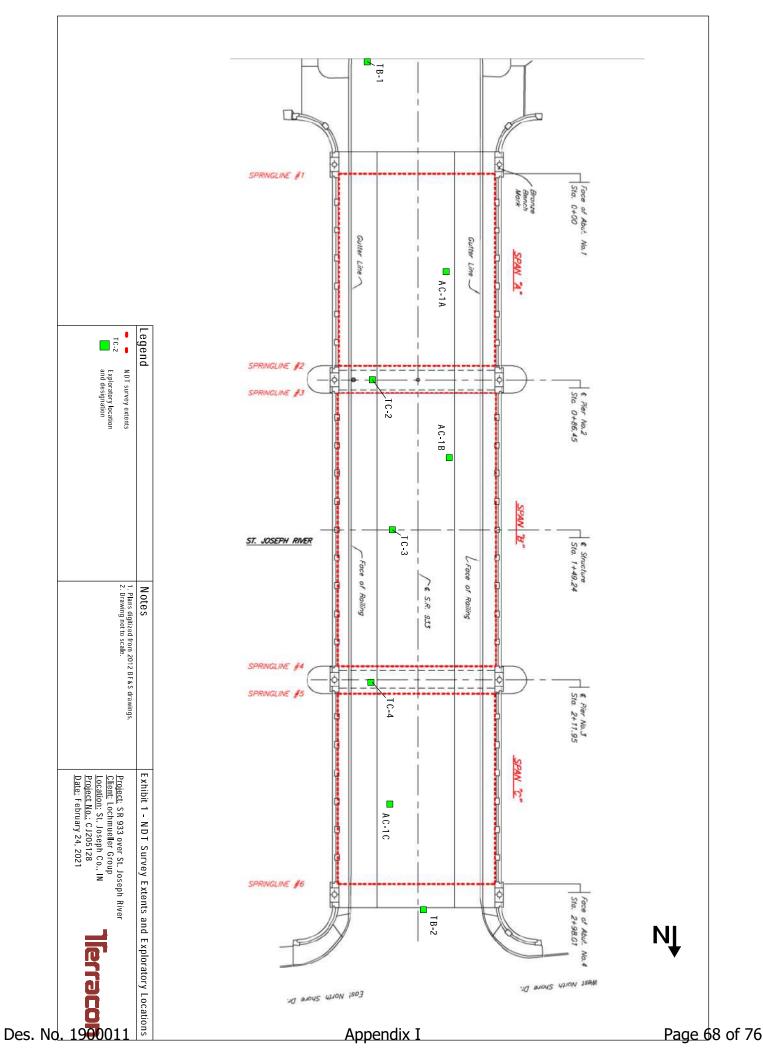
Laboratory Testing

Laboratory testing including classification and strength tests were performed. Results of the laboratory tests are provided on the attached logs and respective laboratory reports in the attachments.

Observations

Boring TB-2 exposed approximately 13 ft of fill visually classified as loose sand and hard cohesive sandy loam overlying the abutment. The boring augered through the Portland cement concrete abutment (approximately 12 ft in thickness). Medium stiff to stiff cohesive silty loam approximately 15 ft in thickness was encountered below the concrete abutment. Alternating layers of granular and cohesive soils were exposed below the cohesive silty loam to the maximum depth of the boring (90 ft). Additional information is provided on the attached boring log.

Thank you for the opportunity to provide our professional services. If you have any questions, please contact us.


Sincerely, Terracon Consultants, Inc.

2

Scott Zajac, P.E. Project Engineer

Attachments:

Exhibit 1 – NDT Survey Extents and Exploratory Locations Field Methods for Exploring and Sampling Soils and Rock Log of Test Boring Grain Size Distribution Test Report Unconfined Compression Test (2)

FIELD METHODS FOR EXPLORING AND SAMPLING SOILS AND ROCK

A. Boring Procedures Between Samples

The boring is extended downward, between samples, by a hollow stem auger (AASHTO* Designation T251), continuous flight auger, driven and washed-out casing, or rotary boring with drilling mud or water.

B. Standard Penetration Test and Split-Barrel Sampling of Soils

(AASHTO* Designation: T206)

This method consists of driving a 2-in. outside diameter split-barrel sampler using a 140-lb weight falling freely through a distance of 30 in. The sampler is first seated 6 in. into the material to be sampled and then driven 12 in. The number of blows required to drive the sampler the final 12 in. is recorded on the Log of Test Boring and known as the Standard Penetration Resistance or N-value. Recovered samples are first classified as to texture by the field personnel. Later in the laboratory, the field classification is reviewed by a geotechnical engineer who observes each sample.

C. Thin-walled Tube Sampling of Soils

(AASHTO^{*} Designation: T207)

This method consists of hydraulically pushing a 2-in. or 3-in. outside diameter thin wall tube into the soil, usually cohesive types. Relatively undisturbed samples are recovered.

D. Soil Investigation and Sampling by Auger Borings

(AASHTO^{*} Designation: T203)

This method consists of augering a hole and removing representative soil samples from the auger flight or bucket at 5-ft intervals or with each change in the substrata. Relatively disturbed samples are obtained and its use is therefore limited to situations where it is satisfactory to determine approximate subsurface profile.

E. Diamond Core Drilling for Site Investigation

(AASHTO^{*} Designation: T225)

This method consists of advancing a hole in rock or other hard strata by rotating downward a single tube or double tube core barrel equipped with a cutting bit. Diamond, tungsten carbide, or other cutting agents may be used for the bit. Wash water is used to remove the cuttings. Normally, a 3-in. outside diameter by 2-in. inside diameter coring bit is used unless otherwise noted. The rock or hard material recovered within the core barrel is examined in the field and laboratory. Cores are stored in partitioned boxes and the length of recovered material is expressed as a percentage of the actual distance penetrated.

American Association of State Highway and Transportation Officials, Washington D.C.

LOG OF TEST BORING – GENERAL NOTES

DESCRIPTIVE CLASSIFICATION

GRAIN SIZE TERMINOLOGY

Soil Fraction	Particle Size	US Standard Sieve Size
	0	nm Larger than 3" nm #10 to 75 mm
Sand: Coarse .	2.00 to 4.76 mm	#40 to #10 n #200 to #40
		nm Smaller than #200 02 mm Smaller than #200

GENERAL TERMINOLOGY

RELATIVE DENSITY

Very soft 0 - 3

Soft 4 - 5

Medium 6 - 10

Stiff 11 - 15 Very Stiff 16 - 30 Hard 31+

PLASTICITY

None to slight $\dots 0 - 4$

Slight 5 – 7

Medium 8 – 22

High/Very High Over 22

Plastic Index

Physical Characteristics - Color, moisture, grain shape	Term	"N" Value
fineness, etc.	Very loose	0 – 5
Major Constituents	Loose	6 – 10
- Clay silt, sand, gravel	Medium dense	11 – 30
Structure	Dense	31 – 50
 Laminated, varved, fibrous, stratified, cemented, fissured, etc. 	Very Dense	51+
Geologic Origin	CONSISTEN	CY
- Glacial, alluvial, eolian,	_	
residual, etc.	Term	"N Value"

RELATIVE PROPORTIONS OF COHESIONLESS SOILS

Term	Defining Range by % of Weight
Trace	
Little	11 – 20%
Some	21 – 35%
And	

ORGANIC CONTENT BY COMBUSTION METHOD

Soil Description

1.01

w/ organic matter 4 - 15 % Organic Soil (A-8) 16 - 30% Peat (A-8) More than 30%

The penetration resistance, N, is the summation of the number of blows required to effect two successive 6-in. penetrations of the 2-in. split-barrel sampler. The sampler is driven with a 140-lb weight falling 30 in. and is seated to a depth of 6 in. before commencing the standard penetration test.

Term

SYMBOLS

lerracon

DRILLING AND SAMPLING

AS	_	Auger Sample
BS	_	Bag Sample
С	_	Casing Size 21/2", NW, 4", HW
COA	_	Clean-Out Auger
CS	_	Continuous Sampling
CW	_	Clear Water
DC	_	Driven Casing
DM	_	Drilling Mud
FA	_	Flight Auger
FT	_	Fish Tail
HA	_	Hand Auger
HSA	_	Hollow Stem Auger
NR	_	No Recovery
PMT	_	Borehole Pressuremeter Test
PT	_	3" O.D. Piston Tube Sample
PTS	—	Peat Sample
RB	_	Rock Bit
RC	_	Rock Coring
REC	—	Recovery
RQD	_	Rock Quality Designation
RS	_	Rock Sounding
S	_	Soil Sounding
SS	_	2" O.D. Split-Barrel Sample
2ST	_	2" O.D. Thin-Walled Tube Sample
3ST	_	3" O.D. Thin-Walled Tube Sample
VS	—	Vane Shear Test
W/DT		Mater Dressure Test

WPT - Water Pressure Test

LABORATORY TESTS

q _p –	Penetrometer Reading,	tsf
------------------	-----------------------	-----

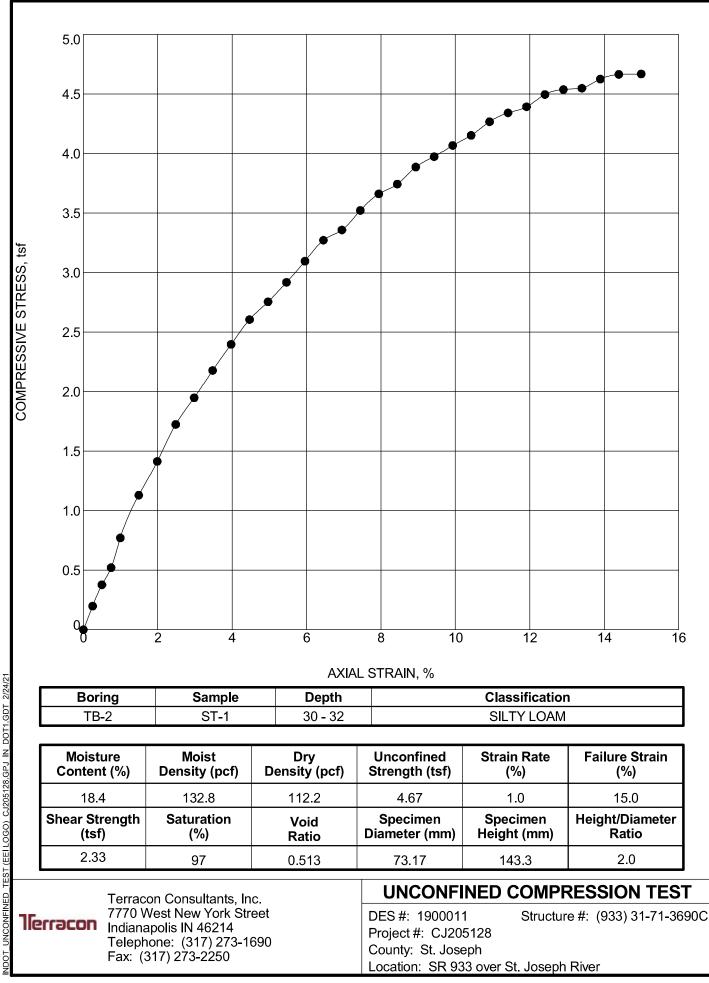
- Unconfined Strength, tsf qu
- Ŵ - Moisture Content. %
- Liquid Limit, % LL
- PL Plastic Limit, %
- PI Plasticity Index
- Shrinkage Limit, % SL
- Loss on Ignition, % LOI
- لا d Dry Unit Weight, pcf
- Measure of Soil Alkalinity/Acidity pН

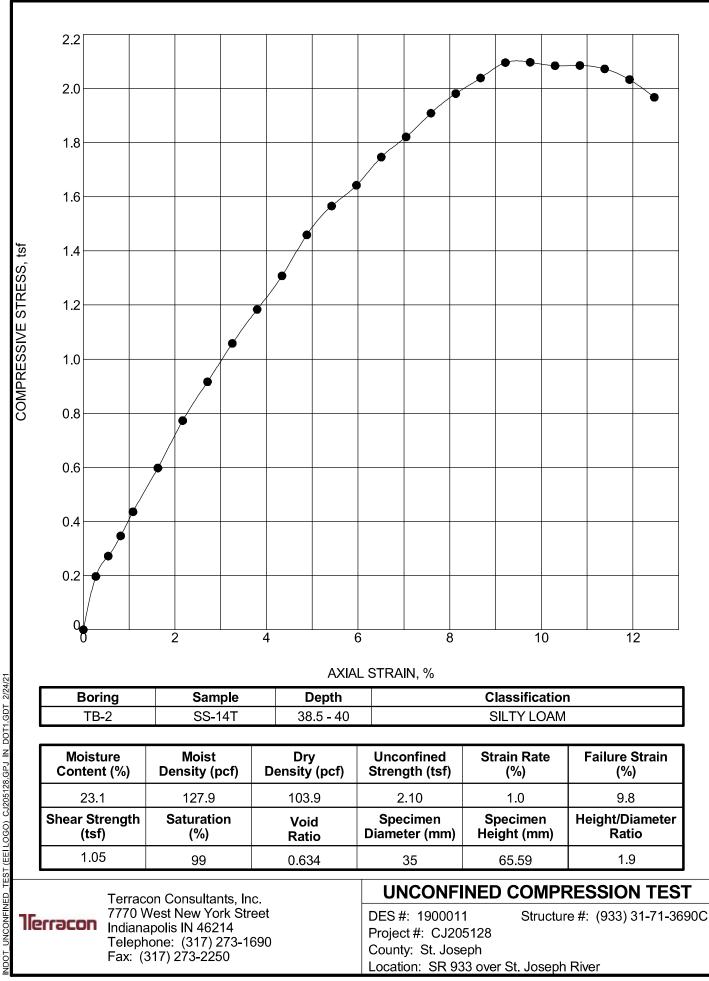
WATER LEVEL MEASUREMENT

- Backfilled upon Completion BF
- NW No Water Encountered

Note: Water level measurements shown on the boring logs represent conditions at the time indicated and may not reflect static levels, especially in cohesive soils.

				-01							BORI	NG	NO.:		TB-2
76-			G OF TI	-9I	B						SHEE				1 OF 3
llerr	acon	CLIENT : Lochmueller Grou								_	LATIT				
		DES NO. : 1900011	STRUCTI	URE #	t : <u>(</u> 93	3) 31-71-36	90C			_	LONG	SITU	DE :		
PROJEC	CT TYPE	E : Bridge Assessment								_	DATU				WGS84
LOCATI		: SR 933 over St. Joseph River									DATE				: 01-21-21
COUNT	Y	: St. Joseph				O.: CJ2051					DATE	CO	MPL	ETE	D : 01-21-21
ELEVAT		685.0	BORING ME	THOE	D : H	lollow Stem	Auger	*	_ H⁄	AMMEF	ł	:_/	Auto		
STATIOI OFFSET	-	0.0 ft	RIG TYPE		:_C	ME 550 X				RILLER	/INSP	:	JP		
LINE		'C'	CASING DIA		:	-			_		ATURE	:_3	39 °F	-	
DEPTH	:	90.0 ft				-			W	EATHE	R	: (Cloud		
GROUN	IDWATE	ER: ∇ Encountered at <u>43.5 ft</u>	${ar \Psi}$ At com	npletio	n <u>12.8</u>	<u>8 ft</u>						1	鬣	Cave	ed in at <u>14.8 ft</u>
ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DES	CRIPTION		SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP., tsf		TERBE	s	REMARKS
<u> </u>	<u>5</u> 0				NL S/	IN 9	% H	žΰ	55	22	50	LL	PL	PI	
4		Portland Cement Concrete	1.5												
4				<u></u>	SS 1	6-7-3	56								
4	2.5_/			· · ·											
				· · ·	SS	F A i	0-								
680.0	5.0			· · ·	2	5-6-4	67			0.5					
		Courd loose preciet brown with		· · ·											
1	$\overline{\mathbb{M}}$	Sand , loose, moist, brown, with loam seams, (fill; visual)	-	· · ·	SS	8-4-5	72								
1	7.5			· · ·	3	0.0				1.25					
-															
-	ME			· · ·	SS 4	6-4-4	100			0.75					
675.0_	10.0				4					0.75					
-	$\frac{1}{1}$		11.0		SS										
_	12	Sandy Loam, hard, moist, brow	n, with		5	3-3-50/2	42	15.1							
¥	12.5_	brick fragments, (fill; visual)	13.0												
	×		19 19	4.4 4.4	SS 6	50/2	83								
670.0	450]			5- 8 4- 4 4- 4	•										
0,0.0_	-														
-	×		<i>P</i>	6 A M A M	SS 7	50/3	100								
4.	17.5			4 A A											
+	-			4 A A	SS	50/0									
4	-	Portland Cement Concrete			8	50/2	83								
665.0_2	20.0		<i>P</i> .												
	-		<i>P</i>	4 4 4	SS	50/2	83								
	<u>[</u>]		1997 1997		9	50/2									
:	22.5		<i>P</i>	4.4 A											
1			A	6 8 4 4	SS	50/3	100								
1	1			4.4.9 4.4 4.4	10										
660.0_2	25.0		25.0 +	- + +											
+				+ + +	60										
4,	_{27 5} -₩	Silty Loam, medium stiff to stiff	, moist, +	+ + +	SS 11	4-3-5	100	17.1		4.5					
	27.5_/	gray, A-4, Lab No. 29534		+ + +											
			+	+ + +	SS		400								
655.0	30 0 1		+	+ + +	12	3-3-4	100	19.3		4.25					
	J U.U	Continued	on next page												


Des. No. 1900011


											TB-2					
		LOG OF TES		SHEE	Т		OF3									
ler	racon	CLIENT : Lochmueller Group, Inc.						_	LATIT	UDE :	_	41.68856				
		DES NO. : 1900011 STRUCTURE	# : <u>(</u> 93	33) 31-71-36	90C			_	LONG	SITUDE :		-86.25062				
PROJE	CT TYPE	: Bridge Assessment		ı					DATU	JM :		WGS84				
ELEVATION	SAMPLE DEPTH	SOIL/MATERIAL DESCRIPTION	SAMPLE NUMBER	SPT per 6"	% RECOVERY	MOISTURE CONTENT	DRY DENSITY, pcf	POCKET PEN., tsf	UNCONF COMP tsf		s	REMARKS				
- - - 650.0- - - - - - - - - - - - - - - - - - -	37.5-	Silty Loam, medium stiff to stiff, moist, gray, A-4, Lab No. 29534 + + + + + + + + + + + + + + + + + + +	- - - - - - - - - - - - - - - - - - -	3-5-9 3-5-7	92	21.9	112.2	>4.5 3.75 4.5 3.25	4.67 2.10							
- - - 640.0 - -	42.5	Silty Loam, loose, wet, gray, A-4(0), Lab No. 29981	-	2-4-6	100	26.3				NP NP	NP	⁻ 43.5, SS-15 : SG = 2.60, pH = 8.6				
- 635.0_ -	50.0	+ + + 50.0 + + + + + + + + + + + + +	- SS 16	2-4-6	100	22.6										
630.0-	52.5	Silty Clay Loam, stiff, moist, gray, (visual)	SS 17	3-5-9	100	24.5 25.3		2.75								
	57.5 60.0 62.5	Sand, medium dense to very dense below 60 ft, wet, gray, A-2-4, Lab No. 29532		4-6-10	100							 * 60.0, Begin rotary drilling 				
620.0-	65.0		SS 19	50/5	100											
4		Continued on next page														

Des. No. 1900011

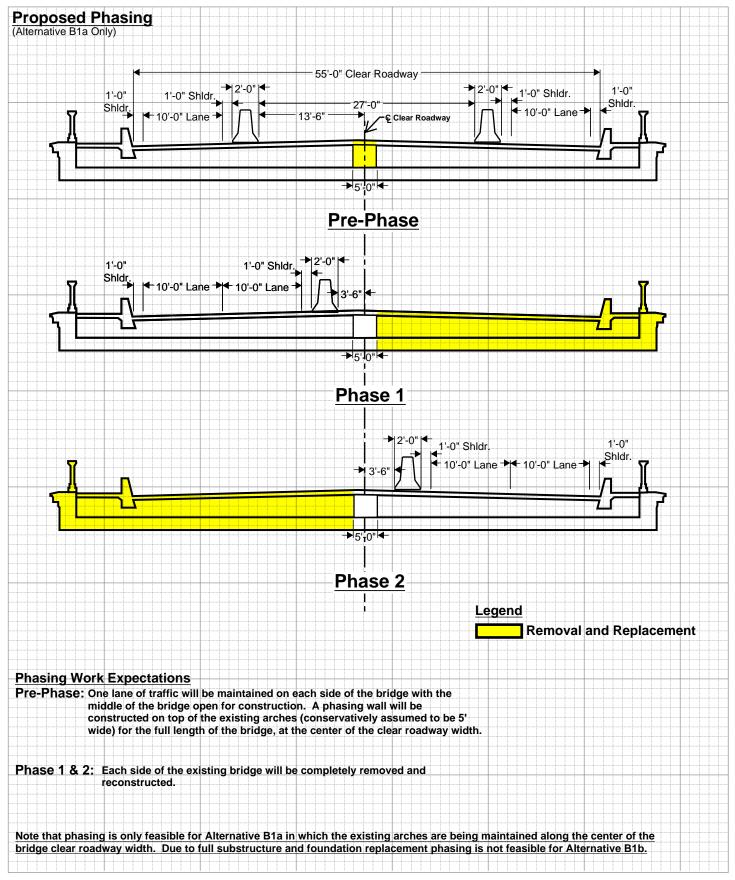
											BORII	NG N	10.:	TB-2					
35												SHEE				3 OF 3			
ller	racc							0) 0 · - · -				_	LATIT						
					STRUC	TURE	# : <u>(93</u>	3) 31-71-36	90C			_							
			Bridge A	ssessment							cf		DATU				WGS84		
ELEVATION	Ш						œ		ΞRΥ	ᄥ	ي ح	⊢ <u>.</u>	tsf	ATT	ERBE	ERG			
LAN	MPLI PTH		S	OIL/MATERI	AL DESCRIPTION		APLE	<u>و</u> ت ا	NOC	ISTU VTEN	\SIT	CKE.	MP.,			-	REMARKS		
	SAI						SAN	SP'	% REC	0 V V V V V	DER	ОШ	ΪÖ	LL	PL	Ы			
[Ц] 615.0- 615.0- 605.0- 600.0- 595.0- 595.0- 595.0- 595.0- 595.0-	72.5 72.5 77.5 80.0 82.5 87.5 90.0 90.0 92.5 995.0	X) ft, wet, <u>(</u>	lium dense to gray, A-2-4, L	90.0 90.0 g at 90.0 ft		Sample Semple SS Sample SS SS SS SS SS SS SS SS SS SS SS SS SS	24-32-42 50/5 42-44-50/4 30-32-50/4 32-50/1	100 100 100 83	MOISTURE	DRY	PEN., tsf	UNCONF., tsf		PL	PI			
	97.5_																		

Г	U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 6 ⁴ 3 ² 1.5 ¹ 3/4 ^{1/2} 3/8 ³ 4 ⁶ 8 ¹⁰ 14 ¹⁶ 20 ³⁰ 40 ⁵⁰ 60 ¹⁰⁰ 140 ²⁰⁰																																						
				6 '	4	3	2	1.5	1	3/4	1/	^{/2} 3/	8	3	4	6	81	0 ₁₄	16	20	30	40	50	60	10	⁰ 14	0 ²⁰	0											_
	100			I		:		ľ		:		Π	1				4		•		+	ł	-+			\sim													
	95					:	1	+		:																	N			+									_
	90	+				:	_	+	-	:		_		$\left \right $	$\left \right $					+			_					-	$\left \right $	+	_		+++	++		_			
	85					:				:																													
	00					:				:																													
	80					:	+			:										╈								t	+	+	+			+					
	75					:	+			:										\parallel										_									_
						:				:																													
	70					-				:																													
	65					:	+	+		:		_	\parallel							╫			_					\mathbb{H}		+				++		_			
Б	60									:																													_
ΜE						:				:																													
β	55					:				:												i																	
ЦЦ	50						+	+	-	:		_	\square							╈										+						_			
ΤF	45				Щ			\perp					\parallel							\parallel	\parallel								\mathbf{N}				$\parallel \mid$	\parallel			\square		
PERCENT FINER BY WEIGHT					$\left \right \right $:																							$ \mathbf{V} $										
ER	40									:																			h	R									
Ľ	35					:	+	+	-	:		-		$\left \right $						╢			_					\square	++	\rightarrow	_			++		-	+		_
	30					:				:																					X								
						:				:																						•							
	25					:	+			:										Ħ																			
	20					:	+	+	-	:		_	\parallel	\square						╢			_					\square	$\left \right $	+	_		+++	++	\square		\checkmark		
	15					:				:																												<u>\</u>	
	13					:				:																												-	
	10					:	+	+		:																				+						-			_
	5						+	_		:										╢										_						_			_
	٥					:																																	
				1(00							10)						1							0	.1					0	.01					(0.001
L																(GRA	AIN S	SIZE	E IN	I MI	LLI	MET	TEF	RS														
L	ſ	C	OBBI	FS					(×Α										S	A	١D									SIL	т						
										ЭГ	.A.		_						CO	arse	е			f	fine							SIL	_ I					Cla	ly
	s	peci	men	Ident	tific	ati	on			_ab	o #							Те	xtu	al	Cla	issi	fica	tior	n					L	L	P	۲L		ΡI		Сс		Cu
	тв-	-		SS-1			43.	-		299													LOA								 1P	N		-	NP			+	
																			(•, •			-07															-	
2124121																																				+		+	
																																				+		\neg	
																																						+	
3	s	peci	men	Ident	tific	ati	on			D6	60			D3	80		D1	10		LO)I		pН		%(Grav	vel	(%Sa	and		%S	Silt	1	%	Cla	y	 ;	SG
				SS-1:			43.	-		0.0	54			0.0	21	\top										2.2			5.			74.				7.9	+		2.6
																																					+		
																																					\top		
																																					+		
																																					\neg		
	•			т.				<u> </u>		14	.	h.a.		_								GF	RA	IN	S	ZF	E C) 5	STF	RIF	3U ⁻	ΓΙΟ	Ν.	TE	S	ΓF	REF	ò	RT
770				Te 77	rra 70	ACC M	on /es	St N	ons Vev	ulta v Y	ani 'orl	ເຣ, k ເ	in: Stre	c. Sel						╞			#:																 690C
z	ler	rac	:on	Inc	lia	na	рс	olis	IN	46	21	4											#. ∋ct∶					28		3	aut	Juie	;#.	(5	,00	, 3	1-1	1-0	0300
				Te	lep	pho	on	e:	(3	17)) 27 25	73- 1	-16	<u>59</u> ()								nty:																
				га	х.	(3	17	·)	273	-24	200	,																	er S	st. J	lose	eph l	Riv	er					

Des. No. 1900011

Appendix J: Maintenance of Traffic Conceptual Plan

 PROJECT NAME
 SR 933 (Michigan Road) over St. Joseph River


 DES/PROJECT NUMBER
 1900011


 LOCH GROUP PROJECT NUMBER
 120-3001-01B


 MADE BY
 ACS
 DATE
 06/27/2021

 CHECKED BY
 MAR
 DATE
 06/30/2021

 SHEET
 1
 OF
 1

Lochmueller Group, Inc.	Calc By:	ВКА	5/25/2021
	Chck By:	BSS	5/25/2021

Work Zone Road	Users Costs	
Detour resulting in Additional Travel T		Travel Time
Project Infor	mation	
Des:	1900	0011
Highway / Roadway:	SR 933 - Michiga	an Street Bridge
County:	St. Jo	seph
District:	LaPo	orte
Project Letting Year:	20	23
Input	S	
	Car	Truck
AADT of Detoured Section:	17,805	480
Time to Drive the Roadway Section (Mins):	7	7
Time to drive the detour or work zone (Mins):	15.5	15.5
Duration of Work Zone (Days):	70	00
Calculati	ons	
Hourly Value of Time:	\$31.77	\$43.60
Delay (Mins):	8.50	8.50
Delay (Hours):	0.14	0.14
Delay Cost per Vehicle (\$):	\$4.50	\$6.18
Delay Cost per Day (\$):	\$80,145	\$2,965
Delay Cost for Work Zone Duration:	\$56,101,835	\$2,075,511
Total Delay Cost for Work Zone Duration:	\$58,17	7,346
Result	S	
Average Delay Cost per Day:	\$83,	.110

Lochmueller Group, Inc.	Calc By:	ВКА	5/25/2021
	Chck By:	BSS	5/25/2021

Work Zone Road Users Costs						
Reduced Speed Scenario						
Project Information						
Des:	1900011					
Highway / Roadway:	SR 933 - Michigan Street Bridge					
County:	St. Joseph					
District:	LaPorte					
Project Letting Year:	2023					
Inputs						
· · · · ·	Car	Truck				
AADT of Section:	17,805	480				
Length of the Work Zone (Miles):		0.35				
Original Posted Speed (MPH):	35	35				
Work Zone Speed (MPH):	25	25				
Duration of Work Zone (Days):	700					
Calculations						
Hourly Value of Time:	\$31.77	\$43.60				
Travel Time Posted Speed (Secs):	36.00	36.00				
Travel Time Work Zone Speed (Secs):	50.40	50.40				
Additional Travel Time (Secs):	14.40	14.40				
Additional Travel Time (Hours):	0.004	0.004				
Delay Cost per Vehicle:	\$0.13	\$0.17				
Delay Cost per Vernole	\$2,263	\$84				
Delay Cost for Work Zone Duration:	\$1,584,052 \$58,6					
Total Delay Cost for Work Zone Duration:	\$1,642,654					
Results						
Average Delay Cost per Day:	\$ 2 ,3	347				

Appendix K:

Consulting Parties Meeting Summary & Response Comments

Subject of email: FHWA Project: Des. No. 1900011; Consulting Party Meeting Summary, SR 933 Bridge Project, St. Joseph County, Indiana

Des. No.: 1900011 Project Description: Scope undetermined Location: SR 933 (Michigan Street) over St. Joseph River, 1.59 miles north of SR 23, City of South Bend, Portage Township, St. Joseph County, Indiana

The Indiana Department of Transportation (INDOT), with funding from the Federal Highway Administration (FHWA), proposes to proceed with a bridge project (Des. No. 1900011). The Section 106 Early Coordination Letter for this project was originally distributed on November 2, 2020. The Historic Property Short Report was distributed on January 28, 2021.

As part of Section 106 of the National Historic Preservation Act, a Meeting Summary for the May 20, 2021, consulting party meeting has been prepared and is ready for review and comment by consulting parties.

Please review this documentation, which is attached to this email and also located in IN SCOPE at http://erms.indot.in.gov/Section106Documents/ (the Des. No. is the most efficient search term, once in IN SCOPE), and respond with any comments that you may have. If a hard copy of the materials is needed, please respond to this email with your request as soon as you can.

Consulting parties have thirty (30) calendar days to review and provide comment. Tribal consulting parties may enter the process at any time and are encouraged to respond to this notification with any comments or concerns at their earliest convenience. Tribal contacts may contact Shaun Miller at <u>smiller@indot.in.gov</u> or 317-416-0876 or Kari Carmany-George at FHWA at <u>K.CarmanyGeorge@dot.gov</u> or 317-226-5629.

Thank you in advance for your input,

MEETING SUMMARY

Date of Meeting:	May 20, 2021	Re:	Brid Brid 011	. No. 1900011 (DHPA No. 26693), SR 933 ge Project – Scope Undetermined, ge No. (933)31-71-03690 E (NBI No. 046), SR 933 (Michigan Street) over St. eph River
Location:	Virtual	Issue Date	e:	May 26, 2021
Submitted By:	Hannah Blad			
In Attendance:	Mary Kennedy, INDOT CF Kelyn Alexander, INDOT John Krueckeberg, INDO Danielle Kauffmann, SHP Rachel Sharkey, SHPO Kari Carmany-George, FF Adam Toering, Historic Preservation Commission South Bend & St. Joseph	CRO F PM O IWA	Gary Han Ruth	d Costa, Lochmueller Group / Quigg, Lochmueller Group nah Blad, Lochmueller Group n Hook, Lochmueller Group nael Vereb, Lochmueller Group

This summary is an overview of the meeting discussion and is not presented as detailed minutes, wherein each individual speaker's questions or comments are quoted as a matter of record. Although, in several areas for clarity, more precise wording from the recording of the meeting has been used for optimal representation.

ITEMS DISCUSSED:

I. Welcome & Introductions:

a. The attendees listed above were introduced and their affiliations were provided.

II. Section 106 & Indiana's Historic Bridges Programmatic Agreement Background

 Hannah Blad (HB) of Lochmueller Group opened up the meeting by explaining the background of Section 106 and the National Historic Preservation Act (NHPA). HB explained Section 106 is part of the National Historic Preservation Act, a federal law requiring federal government agencies to take into account the effects of their undertakings (i.e. construction projects) on historic properties (resources either eligible for, or

> 112 West Jefferson Blvd, Suite 500 South Bend, Indiana 46601 PHONE: 574.334.5460

> listed in, the National Register of Historic Places [NRHP]). Kari Carmany-George (KCG) of the Federal Highway Administration (FHWA) was asked to provide any additional information and she noted that Section 106 applies when certain criteria are met and that usually it is federal funding that engages the Section 106 process. KCG stressed that FHWA wants to hear from the Consulting Parties regarding their concerns and that the project team is "here to listen" today as well as present information.

- b. HB then went on to explain the steps of the Section 106 process and provided an outline. HB then moved on to explain the history of Indiana's Historic Bridges Programmatic Agreement, including when the agreement was initiated, the goals of the agreement, and the management tools that came out the agreement. HB also explained the 2010 Indiana Historic Bridges Inventory, the resulting list of eligible bridges, and how they are divided into "Select" and "Non-Select" bridges and what these terms mean. The SR 933/Michigan Street Bridge is a "Select" bridge.
- c. HB gave a quick review of the Section 106 process to show where the SR 933 bridge project stands now. HB noted that Step 1 has been completed and Early Coordination Letters were sent to potential consulting parties on November 2, 2020. As a result, the State Historic Preservation Officer (SHPO), Indiana Landmarks – Northern Regional Office, the Historic Preservation Commission of South Bend & St. Joseph County, and the Miami Tribe of Oklahoma have accepted consulting party status.
- d. HB then talked about Step 2, the identification of historic properties, noting that a Historic Property Short Report (HPSR) was sent to consulting parties on January 28, 2021. HB also noted that an Archaeology Report will be completed, if necessary, after the final project scope has been determined. It was also brought up that a mistake was made in the consulting party invitation email. This email incorrectly noted that an Archaeology Report was available for review, but such a report has yet to be produced and will only be produced if deemed necessary after the scope of the project has been determined. Finally, HB talked about Step 3 which is the Historic Bridge Alternatives Analysis (HBAA). This step was noted as ongoing.
- e. HB then moved on to reviewing the above-ground resources within the APE for the project. HB first explained what a historic property is and what criteria a property must meet to be listed in the NRHP.
- f. HB then provided an overview, explaining each resource already listed in the NRHP and deemed eligible for the NRHP within the APE for the project. Each resource was shown along with a short summary of each resource.
- g. HB then progressed further into defining Step 3 of the Section 106 process, the development of the HBAA, and introduced Michael Vereb (MV).

III. Step 3: Development of the HBAA

a. MV started his part of the presentation reintroducing the participants to the Michigan Street Bridge. He discussed the physical characteristics of the

bridge including its type, style, construction materials, and length, width, and bridge typical section features.

- b. MV then moved on to discuss the history of the rehabilitation work done to the bridge using a series of historic photos of the bridge. MV pointed out the original bridge typical section features were modified through the years including changes to the sidewalks, the addition of raised curb barriers, the removal of the historic light standards, and the replacement of the light standards. MV then brought up a timeline of the rehabilitations, noting that since its original construction in 1914, the bridge has undergone five significant rehabilitation projects.
- c. MV then proceeded to talk about the structural condition of the bridge. MV first noted that railing cracking and coping deflections are an indication of underlying structural deficiencies. Next, MV pointed out the arch and pier segment displacement that has occurred. MV noted that a portion of Pier 3 settled due to undermining and that this led to the displacement of arch segments in Spans B and C. Photos were then shown of the arch segment displacement, noting that in 2013 INDOT began taking measurements at marked locations along the separation to monitor the arch segment displacement. The measurements have not appreciably changed since 2013, which means the movement appears to be stabilized.
- d. MV then moved on to discuss the repairs that have been made to address the structure deficiencies. MV noted that in 2006 a cofferdam was added around each of the piers consisting of a sheet piling perimeter filled with concrete. While the addition of the concrete filled cofferdam helped to stabilize the foundations, it also added load to the existing foundations. MV noted that in 2012 deterioration of the arch rings was addressed by epoxy injection of transverse cracks, patching, and installation of Carbon Fiber Reinforced Polymer (FRP) strips. This rehabilitation did not address the differential settlement of the arch segments in Spans B and C and that condition remains today. MV further detailed the FRP strips, noting that a coating was applied to the underside of arches for UV protection of FRP and that there are some locations where the FRP strips are becoming unbonded and have peeled off the bottom of the arch, especially in Span B.
- Finally, MV discussed the overall limestone condition of the bridge. MV noted, and showed with images, that the limestone shows different types of deterioration including spalling, weathering, and mortar joint deterioration. MV also showed images of cracking and spalling of the limestone blocks in the spandrel wall fascia.

IV. Review of Anticipated Alternatives:

a. Prior to discussing the alternatives, MV first talked about the purpose and need for the project. MV noted that the purpose and need on the slide were abbreviated versions. The purpose and need statements are below:

- 1. The primary need for the Michigan Street Bridge project is evidenced by the deteriorated condition and insufficient load capacity of the bridge. In addition, the sidewalk on the east side of the bridge does not meet current Americans with Disabilities Act (ADA) standards.
- 2. The purpose of the project is to provide a crossing of the St. Joseph River that has a condition rating of at least 7 out of 9, which is considered to be in "good" condition, as well as provide ADAcompliant pedestrian facilities. In addition, the purpose of the project is to improve the load rating factor. This project will extend the life of this crossing for a minimum of 25 years.
- b. MV then described the three alternatives, first discussing the No Build Alternative. MV stated that the No Build alternative would not result in any work being done to the structure and leaving it as is. MV also noted that this alternative is not feasible because the current structure has an estimated remaining service life of 5 to 10 years until rehabilitation or reconstruction is needed.
- c. The second alternative MV discussed was Alternative B1a which is the Rehabilitation for Continued Vehicular Use Meeting Secretary of the Interior's Standards for Rehabilitation, including arch and foundation rehabilitation. Plan sheets were shown with colors indicating what would be removed and replaced and what would be removed, repaired, and reinstalled on the bridge. This alternative includes the removal and storage of light standards and limestone for repair and replacement. The pier foundations will be strengthened, a portion of the arch where the displacement has occurred will be reconstructed, all the arches will be patched and waterproofed, the spandrel walls will be reconstructed, the arch fill will be replaced, and the pavement/curb barrier/sidewalks will be reconstructed.
- d. The third alternative MV discussed was Alternative B1b which is the Rehabilitation for Continued Vehicular Use Meeting Secretary of the Interior's Standards for Rehabilitation, including arch and foundation replacement. Similar to the second alternative the limestone and light standards will be removed and stored before they are repaired and replaced on the rehabilitated structure. This alternative includes the construction of a new abutment and pier foundations on new piling. The arches will be reconstructed and waterproofed. The spandrel walls will be reconstructed, the arch fill replaced, and the concrete pavement/curb barrier/sidewalks will also be reconstructed.
- e. Following the alternatives, MV showed an image of both elevations of the bridge where the current limestone and concrete conditions are color coded. The yellow-colored limestone fascia and railing post and pilaster elements (as shown on the image) would be removed and replaced on the rehabilitated structure to match the existing appearance. The red colored

> limestone (as shown on the image) indicated damaged limestone that will either be repaired or replaced in-kind. MV noted that the light blue rail panels (as shown on the image) are the existing concrete panels and they will be replaced in-kind. MV pointed out two purple colored rail panels (as shown on the image) on the east elevation on the south end of the bridge. These are the only two remaining rail panels constructed of limestone. MV noted the intent of the project is to preserve the limestone railing panels and place them back in their location with the rehabilitation. The next slide showed images of the two remaining limestone railing panels and their current condition.

V. Summary Remarks/Next Steps:

- a. Following the discussion of the alternatives, HB talked about the next steps for the project which includes the distribution of the meeting summary, the acceptance of consulting party comments regarding the consulting party meeting, and the eventual distribution of the HBAA.
- b. Danielle Kauffmann (DK) asked for clarification regarding the replacement of the concrete rails, asking if they will be replaced in-kind and if the only two existing limestone panels will be the only limestone railing panels on the bridge following the reconstruction. MV concurred with DK's statement, noting that concrete rails will be replaced in-kind with concrete rails and that only the two existing limestone railing panels will continue to be constructed of limestone following the rehabilitation alternatives as currently planned. MV noted that as early as 1945, limestone panels were replaced on the bridge which indicates that the material was and is not ideal to use in the railing area of the bridge. MV also noted that some of the historic aesthetic details of the original railing panels might be restored in the reconstructed concrete railing panels, as over time the previous rail replacements were not sympathetic to the original design of the bridge.
- c. Mary Kennedy (MK) asked if replacing the concrete rails in-kind was a cost issue, deadweight issue, a combination of the two, or another issue entirely. MV indicated that it was not a structural issue, but that it would be a cost issue that would prevent putting limestone railings throughout the structure. MK asked if there were durability issues with the limestone railings. MV concurred with this statement, noting that starting in 1945 the panels began to be replaced. He noted that weathering and maintenance issues likely resulted in the replacement of the limestone railing panels. John Krueckeberg (JK) asked MV if the concrete railings could be stamped to look like limestone or somehow given the appearance of limestone. MV concurred with that statement. JK then asked HB if the material or the aesthetic would be more important to the historic nature of the bridge. HB noted that both the material and aesthetic are important but that if the material used in the original construction has long term maintenance issues, a comparable material would be acceptable. HB noted that if the concrete

> can be made to look more like limestone, the bridge would retain a higher level of historic aesthetic. MV and JK continued to talk about the use of concrete. MV noted that aggregate can be seen in the concrete panels and that it could be possible to stamp them or texturize the replacement panels to look similar to limestone. HB asked if the salt use (for ice melt on the pavement) on the bridge can be attributed as the main cause of the deterioration of the limestone railing panels. MV agreed that the use of the salt could be a cause of the deterioration and noted that the remaining two panels do seem to indicate that, since the one closer to the road has significantly more deterioration than the other panel. MV also noted that in general the varied degree of limestone deterioration in the individual blocks could be the nature of the material, depending on where they were extracted from as evidenced by similar weathering of fascia blocks on the spandrel walls which are not directly exposed to road salt. Adam Toering (AT) asked if the remaining limestone panels were located at the end of the bridge where the railing flares. MV confirmed that the remaining limestone panels are located at the southeast corner of the bridge.

- d. AT then asked about the lifespan option associated with the alternatives, noting that the bridge currently has a lifespan of 5-10 years, but wondered if the other two options had an anticipated lifespan of 25 years or a longer outcome. MV noted that the full replacement of the foundations and arches would result in an anticipated lifespan of about 75 years, while the rehabilitation of the foundations and arches would be less, the exact lifespan amount is unknown at this time. MV brought up the fact that the bridge has load restrictions and that the foundation fixes in the past have added additional weight. These problems will persist even after the rehabilitation.
- e. MK noted that the bridge is a local historic landmark and due to local preservation ordinances, a Certificate of Appropriateness (COA) will be needed for the work on the bridge. MK asked AT if any of the proposed alternatives would cause problems with getting an approved COA, and that INDOT should be looking out for any problems the work will cause with regard to getting an approved COA. AT noted that he thinks the alternatives will be able to be approved administratively because of how the bridge will be reconstructed. AT noted that if the footprint changed or if the light standards were removed, that's when such an issue would come up and the COA would need to go in front of the board. AT reiterated that tentatively he thinks either alternative could be approved but noted that a lot of review needs to happen before the application can be approved.
- f. No other questions were asked, and HB concluded the meeting.

VI. Next Steps

a. Consulting Parties have 30 days to provide comments on the preliminary alternatives. Comments are expected by June 25, 2021.

The meeting concluded at approximately 10:57 am.

Meeting Summary prepared by Hannah Blad and Gary Quigg

The above constitutes our understanding of the meeting. If you believe there are omissions, additions, or corrections, please send your written comments within seven working days to Lochmueller Group.

Eric Holcomb, Governor Daniel W. Bortner, Director

Division of Historic Preservation & Archaeology • 402 W. Washington Street, W274 • Indianapolis, IN 46204-2739 Phone 317-232-1646 • Fax 317-232-0693 • dhpa@dnr.IN.gov • www.IN.gov/dnr/historic

June 1, 2021

Hannah Blad Section 106/Historian Lochmueller Group 112 W. Jefferson Boulevard, Suite 500 South Bend, Indiana 46601

> State Agency: Indiana Department of Transportation ("INDOT") Federal Agency: Federal Highway Administration, Indiana Division ("FHWA")

> > Re: DUAL REVIEW: Consulting party meeting summary for the SR 933 Bridge Project over the St. Joseph River (Scope Undetermined), South Bend, St. Joseph County, Indiana (Des. No. 1900011; DHPA No. 26693)

Dear Ms. Blad:

Pursuant to Section 106 of the National Historic Preservation Act of 1966, as amended (54 U.S.C. § 306108); implementing regulations at 36 C.F.R. Part 800; the "Programmatic Agreement Among the Federal Highway Administration, the Indiana Department of Transportation, the Indiana Historic Preservation Officer, and the Advisory Council on Historic Preservation Regarding Management and Preservation of Indiana's Historic Bridges" ("Indiana Historic Bridges PA"); and the "Programmatic Agreement (PA) Among the Federal Highway Administration, the Indiana Department of Transportation, the Federal Highway Administration, the Indiana Department of Transportation, the Advisory Council on Historic Preservation and the Indiana State Historic Preservation Officer Regarding that Implementation of the Federal Aid Highway Program In the State of Indiana" ("Indiana Minor Projects PA"); and also pursuant to Indiana Code 14-21-1-18 and 312 Indiana Administrative Code ("IAC") 20-4, the staff of the Indiana State Historic Preservation Officer ("Indiana SHPO") has reviewed your April 26, 2021 submission which enclosed the invitation to the May 20, 2021 consulting parties meeting. We received the subsequent meeting summary May 26, 2021.

Danielle Kauffmann and Rachel Sharkey of my office virtually attended the May 20, 2021 consulting parties meeting. Regarding the meeting summary, we have no corrections to suggest. While the exact scope of work for the project is not yet determined, we note that the project's purpose and need is to improve the condition of the bridge, extend the overall life of the structure, and provide ADA accessible sidewalks across the bridge.

As we asked at the meeting, we are curious about the differences in cost, project life, and feasibility between replacing the concrete railings in-kind or instead with limestone as it was originally constructed. We note that the meeting mentioned stamping the concrete to mimic the appearance of limestone, however, we caution creating a false sense of history by some of the design ideas mentioned.

We look forward to reviewing the Historic Bridges Alternatives Analysis that will go into greater detail the specifics of the two proposed rehabilitation alternatives discussed at the meeting.

www.DNR.IN.gov An Equal Opportunity Employer

The DNR mission: Protect, enhance, preserve and wisely use natural, cultural and recreational resources for the benefit of Indiana's citizens through professional leadership, management and education.

SHPO Comments to Consulting Parties Meeting Summary Page 2 of 3

Hannah Blad June 1, 2021 Page 2

As indicated in INDOT's April 26 distribution letter and again in the meeting summary, information on archaeological investigations, if needed, will be provided after the scope of work for this project is finalized.

If you have questions regarding our dual review of the aforementioned project, please contact DHPA. Questions about archaeological issues should be directed to Rachel Sharkey at (317) 234-5254 or rsharkey@dnr.IN.gov. Questions about historic buildings or structures pertaining to this review should be directed to Danielle Kauffmann at (317) 232-0582 or dkauffmann@dnr.IN.gov.

For the benefit of those recipients of a copy of this letter who are not Section 106 consulting parties, please be aware that the documents discussed here can be found online in IN SCOPE at http://erms.indot.in.gov/Section 106Documents/. From there, search by this project's designation number: 1900011. Anyone receiving an e-mailed copy of this letter who does *not* wish to receive future copies of our correspondence about this bridge project is asked to reply to dkauffmann@dnr.IN.gov and so advise us.

In all future correspondence regarding the dual review of this bridge project on SR 933 over the St. Joseph River in South Bend, St. Joseph County (Des. No. 1900011), please continue to refer to DHPA No. 26693.

Very truly yours,

1Ch. 1 W Shim

Beth K. McCord Deputy State Historic Preservation Officer

BKM:DMK:dmk

EMC to federal and state agency or consultant staff members Kari Carmany-George, FHWA Anuradha Kumar, INDOT Mary Kennedy, INDOT Shaun Miller, INDOT Susan Branigin, INDOT Hannah Blad, Lochmueller Group Chad Costa, Lochmueller Group Danielle Kauffmann, DNR-DHPA Rachel Sharkey, DNR-DHPA

EMC to Indiana Historic Preservation Review Board Members: J. Scott Keller, Review Board Daniel Kloc, Review Board Jason Larrison, Review Board Chandler Lighty, Review Board Beth McCord, DNR-DHPA, Review Board Ryan Mueller, Deputy Director DNR, Chairman, Review Board Anne Shaw, Review Board April Sievert, Review Board

EMC to potentially interested persons: Eastern Shawnee Tribe of Oklahoma Forest County Potawatomi Community Miami Tribe of Oklahoma Peoria Tribe of Indians of Oklahoma Pokagon Band of Potawatomi Indians Shawnee Tribe

Michiana Area Council of Governments

SHPO Comments to Consulting Parties Meeting Summary Page 3 of 3

Hannah Blad June 1, 2021 Page 3

St. Joseph County Commissioners St. Joseph County Historian The History Museum Historic Preservation Commission of South Bend/St. Joseph County Indiana Landmarks, Northern Regional Office St. Joseph County Highway Department City of South Bend Venues Parks & Arts Honorable James Mueller, Mayor of South Bend City of South Bend, City Engineer Dr. James L. Cooper, DePauw University, Professor Emeritus of History Paul Brandenburg, Indiana Historic Spans Task Force Tony Dillon, Historic Hoosier Bridges Nathan Holth, Historicbridges.org Kitty Henderson, Historic Bridge Foundation South Bend Common Council